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Background  Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating 
neurological conditions that causing the impaired consciousness. However, there were few studies investigated the 
changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI. This study aimed to 
analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness 
(LOC) in patients with VS after post-resuscitated HIBI. 
Methods  We consecutively enrolled 17 patients with VS after HIBI, who experienced cardiopulmonary resuscitation. 
Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and 
we compared regional brain metabolic patterns from 17 patients with those from 15 normal controls using voxel-by-voxel 
based statistical parametric mapping analysis. Additionally, we correlated the LOC measured by the JFK-coma recovery 
scale-revised of each patient with brain metabolism by covariance analysis. 
Results  Compared with normal controls, the patients with VS after post-resuscitated HIBI revealed significantly 
decreased brain metabolism in bilateral precuneus, bilateral posterior cingulate gyrus, bilateral middle frontal gyri, 
bilateral superior parietal gyri, bilateral middle occipital gyri, bilateral precentral gyri (PFEW correctecd <0.0001), and increased 
brain metabolism in bilateral insula, bilateral cerebella, and the brainstem (PFEW correctecd <0.0001). In covariance analysis, 
the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected 
<0.005). 
Conclusions  Our study demonstrated that the precuneus, the posterior cingulate area and the frontoparietal cortex, 
which is a component of neural correlate for consciousness, may be relevant structure for impaired consciousness in 
patient with VS after post-resuscitated HIBI. In post-resuscitated HIBI, measurement of brain metabolism using PET 
images may be helpful for investigating the brain function that cannot be obtained by morphological imaging and can be 
used to assess the brain area responsible for consciousness. 
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ypoxic-ischemic brain injury (HIBI) after 
cardiopulmonary resuscitation is one of the most 

devastating neurological conditions causing the 
impairment of consciousness among adult brain injuries.1 
The patholophysiology of HIBI is a multi-factorial 
processes comprising of hypoxia, ischemia, anoxia, 
cytotoxicity or combination of these. Common etiologies 
include cardiopulmonary arrest, respiratory failure, and 
carbon monoxide poisoning.2 For the survivors from 
HIBI, 30%–60% will develop long-standing cognitive, 
behavioral, or other neurological problems.3 These 
problems may be functionally debilitating and severely 
affect the quality of life for patients and their families. 
 
After post-resuscitated HIBI, most patients remain in a 
comatose state at least temporally, and when patients 
recover from coma the process follows a typical 
progression through various states of diminished 
consciousness. Clinically, patients in coma are 
unresponsive, usually with closed eyes and absent 

sleep-wake cycles, and do not response to various 
stimulations. Although there may be purposeless or 
reflexive behaviors in some cases, goal-directed motor 
activity is absent. Unlikely coma, the vegetative state 
(VS) is characterized by recovery of spontaneous eye 
opening and the restoration of sleep-wake cycles, but the 
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absence of any meaningful behavioral response to stimuli. 
 
Brain positron emission tomography (PET) imaging has 
long been performed for the measurement of brain 
function in the VS state after acquired brain injury. 
However, in adult HIBI, the application of PET has been 
severely limited. Although the several studies using PET 
images for the evaluation of brain function in patients 
following post-cardiac arrest have been reported, most of 
them enrolled small numbers of patients and measured 
regional brain metabolism using visual analysis or the 
region of interest method.4,5 In this study, we analyzed the 
changes of overall brain metabolism and investigated the 
brain areas correlated with the level of consciousness 
(LOC) in patients with VS after post-resuscitated HIBI 
using voxel-by-voxel based statistical parametric 
mapping (SPM) analysis with localization by automated 
anatomic labeling.6 
 

METHODS 
 

Subjects 
We consecutively enrolled 17 patients with VS after 
post-resuscitated HIBI and 15 normal controls. The 
diagnosis of VS was performed according to the clinical 
rating scale for measurement for the LOC by JFK Coma 
Recovery Scale-Revised (JFK CRS-R).7 The JFK CRS-R, 
initially described by Giacino et al,7 has been used to 
investigate the LOC measuring by neurobehavioral 
response of the patients following brain injury. The JFK 
CRS-R consists of 6 subscales addressing auditory, 
visual, motor, oromotor, communication, and arousal 
processes. Scoring is based on the presence or absence of 
specific behavioral responses to sensory stimuli 
administered in a standardized manner. For each subscale, 
the lowest value represents reflexive activity, whereas the 
highest values represent cognitively mediated behaviors 
for auditory function (0–4 points), visual function (0–5 
points), motor function (0–6 points), oromotor function 
(0–3 points), communication (0–2 points), and arousal 
(0–3 points). The summation of scores for the six 
subscales gives the total JFK CRS-R score. The families 
of all participants gave informed consents and all 
procedures were performed with the approval of the 
Institutional Review Board for Clinical Studies. 
 
Imaging and SPM analysis of F-18 fluorodeoxyglucose 
positron emission tomography (F-18 FDG PET) 
Brain metabolism using F-18 FDG PET were acquired on 
a GE Advance PET scanner (GE, USA). After fasting for 
at least 8 hours, subjects received 15 mCi (555 MBq) of 
F-18 FDG intravenously. All subjects were kept in 
unstimulated for 20 minutes with closed eye and 
unplugged ears, and then emission of scanning started 
and continued for 15 minutes. To reduce head movement 
during scanning, the subjects were positioned and 
maintained using an individually molded head holder. 
The in-plane and axial resolution of the scanner were 4.8 
mm full width at half maximum (FWHM), respectively. 
F-18 FDG PET images were reconstructed using a 

trans-axial 8.5 mm Hanning filter and an 8.5 mm axial 
Ramp filter and displayed in a 128×128×35 matrix with a 
pixel size of 1.95 mm×1.95 mm×4.25 mm. 
 
PET images were analyzed using SPM2 (Wellcome 
Department of Cognitive Neurology, Institute of 
Neurology, University College London, UK). Prior to the 
statistical analysis, the PET images for all subjects were 
created by averaging all images and were spatially  
normalized with the Montreal Neurological Institute 
standard PET template (MNI, McGill University, USA) 
using a nonlinear transformation of SPM2. Spatially 
normalized images were then smoothed by convolution 
using an isotropic Gaussian kernel with a 12-mm FWHM 
to increase the signal-to-noise ratio and to accommodate 
the variation in subtle anatomical structures. The effects 
of global metabolism were removed by normalizing the 
count of each voxel to the mean count of the brain 
(proportional scaling in SPM).  
 
Statistical analysis 
After spatial normalization, groups analysis (comparison 
between normal control and all patients with VS, normal 
control and short course VS patients, normal control and 
patients with VS after cardiac arrest induced HIBI, and 
normal control and patients with VS after respiratory 
failure induced HIBI) were performed on a 
voxel-by-voxel basis using two sample t-test. Statistical 
significance was determined using an extent threshold of 
50 voxels. Correction for multiple comparisons was 
applied using familywise error (FEW) approaches and the 
corrected threshold was set at P <0.0001. In addition, 
using single covariance analysis model, we searched for 
significant brain areas in which brain metabolism 
correlated with the LOC in all patients. Regions reaching 
an uncorrected P value of 0.005 were considered 
significant in the covariance analysis with 50 continuous 
voxels in cluster size. For visualization of the t-score 
statistics, the significant voxels were projected onto the 
3D-rendered brain or a standard high-resolution MRI 
template provided by SPM2, thus allowing for anatomic 
identification. Anatomic labeling of significant voxels 
was performed using the automated anatomic labeling 
SPM toolbox6 which was based on anatomy provided by 
the MNI. 
 

RESULTS 
 
Patients clinical data 
The patients group consisted of nine males and eight 
females with a mean age of 40.5 years (range 21–64 
years). The normal control group consisted of seven 
males and eight females with mean age 39.3 years (range 
24–59 years). There was no significant difference 
between the two groups with respect to sex (P=0.51) or 
age (P=0.81). 
 
Table 1 shows the demographics of 17 patients including 
sex, age, etiology of HIBI, duration from injury, and the 
score of JFK CRS-R. Among 17 patients with VS after 
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post-resuscitated HIBI, the causative injury was cardiac 
arrest in nine patients, respiratory failure in seven 
patients, and circulatory hypovolemia in one patient. The 
mean duration from injury was 13.1 months (range 1–60 
months) with 13 patients with short course within 7 
months after injury and the mean score of total JFK 
CRS-R was 4.9 points (range 3–6 points). 
 
Changes of brain metabolism in 17 patients with VS 
after post-resuscitated HIBI 
Table 2, Figure 1, and Figure 2 showed the differences in 
brain metabolism between the control subjects and 
patients with VS after HIBI. SPM analysis of F-18 FDG 
PET images showed that, compared to normal controls, 
patients with VS following HIBI showed significantly 
decreased brain metabolism in bilateral precuneus, 

bilateral posterior cingulated gyri, bilateral middle 
occipital gyri, bilateral superior parietal gyri, the right 
superior frontal gyrus, the right angular gyrus, the right 
supramarginal gyrus, both middle frontal gyri, and 
bilateral precentral gyri (PFEW correctecd <0.0001, κ=50; 
Table 2; Figure 1). In contrast, bilateral insular cortices, 
bilateral cerebella, the right inferior frontal gyrus, and the 
brainstem showed a significant increase in brain 
metabolism in patients with VS following HIBI compared 
with normal controls (PFEW correctecd < 0.0001, κ=50; Table 
2; Figure 2). 
 
Changes of brain metabolism in short course patients 
(13 cases within 7 months after injury) with VS after 
post-resuscitated HIBI 
Table 3, Figure 3, and Figure 4 showed the differences in 

Table 1. Demographics of patients with VS following HIBI

No. Sex Age (years) Etiology of HIBI Duration (months) 
JFK CRS-R 

A/V/M/O/C/A Total (n) 

1 Male 44 Cardiac arrest 1 A0/V0/M2/O0/C0/A2 4 
2 Male 46 Cardiac arrest 2 A1/V1/M2/O0/C0/A2 6 
3 Female 52 Hypovolemia 2 A1/V1/M1/O1/C0/A2 6 
4 Male 64 Cardiac arrest 4 A1/V1/M1/O1/C0/A2 6 
5 Male 30 Cardiac arrest 5 A1/V0/M1/O1/C0/A2 5 
6 Female 53 Respiratory failure 5 A1/V0/M1/O1/C0/A2 5 
7 Female 54 Cardiac arrest 5 A1/V0/M2/O1/C0/A2 6 
8 Male 36 Cardiac arrest 6 A0/V0/M2/O1/C0/A2 5 
9 Male 21 Respiratory failure 6 A0/V0/M1/O1/C0/A2 4 
10 Male 48 Respiratory failure 7 A1/V0/M1/O1/C0/A2 5 
11 Female 34 Respiratory failure 5 A1/V0/M1/O0/C0/A2 4 
12 Female 59 Respiratory failure 10 A1/V0/M1/O1/C0/A2 5 
13 Female 30 Respiratory failure 4 A0/V0/M1/O1/C0/A2 5 
14 Female 24 Cardiac arrest 5 A1/V0/M2/O1/C0/A2 6 
15 Male 27 Cardiac arrest 36 A1/V0/M1/O0/C0/A2 4 
16 Male 41 Respiratory failure 60 A0/V0/M1/O0/C0/A2 3 
17 Male 25 Cardiac arrest 59 A1/V0/M1/O1/C0/A2 5 

HIBI: Hypoxic-ischemic brain injury; JFK CRS-R: JKF coma recovery scale-revised; A/V/M/O/C/A: Auditory/Visual/Motor/Oromotor/Communication/Arousal function 
scale. 

 
Table 2. Brain metabolism in all patients (17 cases) with VS following HIBI compared with normal controls (P FEW corrected <0.0001, κ=50)

Brain metabolism Area 
Coordinate 

t score Cluster 
x y z 

Decrease       
Right side 
Left side 
Left side 
Left side 
Left side 
Right side 
Right side 
Right side 
Right side 
Right side 
Right side 
Right side 
Right side 
Left side 
Right side 
Left side 

Increase 
Right side 
Right side 
Left side 
Left side 
Right side 
Mid 

Precuneus 6 –66 30 16.48 2214 
Middle occipital gyrus –48 –78 14 15.99 2162 

Middle cingulum –4 –52 38 15.73 2214 
Precuneus –14 –74 58 15.07 2162 

Superior parietal gyrus –28 –58 58 14.83 2162 
Middle cingulum 4 –45 35 14.53 2214 

Superior parietal gyrus 30 –56 66 14.29 110 
Middle occipital gyrus 38 –90 –6 13.67 1166 
Superior frontal gyrus 22 12 68 13.36 100 
Middle temporal gyrus 62 –64 10 13.34 391 
Middle frontal gyrus 50 6 52 12.55 303 

Precentral gyrus 38 –15 70 12.12 303 
Angular gyrus 56 –70 32 12.07 391 

Middle frontal gyrus –42 6 56 11.58 192 
Supramarginal gyrus 55 –54 30 11.45 391 

Precentral gyrus –35 –5 55 10.27 192 
      

Insula 38 –6 24 12.41 146 
Cerebellum 22 –48 –46 11.61 2430 
Cerebellum –22 –50 –50 10.99 2430 

Insula –36 –10 24 10.34 80 
Inferior frontal gyrus 26 38 –2 10.19 92 

Brainstem – – – – –    
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brain metabolism between the normal controls and short 
course patients with VS after HIBI. SPM analysis showed 
that, compared to control subjects, short course patients 
showed significantly decreased brain metabolism in the 
right precuneus, the left middle occipital gyrus, the right 
inferior occipital gyrus, bilateral middle frontal gyri, the 
right superior frontal gyrus, and bilateral precentral gyri 
(PFEW correctecd <0.0001, κ=50; Table 2). In contrast, 
bilateral insular cortices, bilateral cerebella, and the 
brainstem showed a significant increase in brain 
metabolism in short course patients with VS following 
HIBI compared with normal controls (PFEW correctecd < 
0.0001, κ=50; Table 3). 
 
Changes of brain metabolism in patients with VS after 
post-resuscitated HIBI according to the etiologies 
(cardiac arrest and respiratory failure) 
SPM analysis showed that, compared to normal controls, 

patients with VS after cardiac arrest induced HIBI 
showed significantly decreased brain metabolism in 
bilateral superior parietal gyri, bilateral precuneus, 
bilateral middle and inferior occipital gyri, the right 
middle temporal gyrus, and the left superior occipital 
gyrus (PFEW correctecd <0.0001, κ=50; Table 4). In contrast, 
the right insular cortex, both cerebella, and the brainstem 
showed a significant increase in brain metabolism in 
patients with VS following cardiac arrest induced HIBI 
compared with normal controls (PFEW correctecd <0.0001, 
κ=50; Table 4). In addition, compared to normal controls, 
SPM analysis in patients with VS after respiratory failure 
induced HIBI showed significantly decreased brain 
metabolism in bilateral middle occipital gyri, the left 
precuneus, bilateral middle frontal gyri, the right superior 
frontal gyri, and the bilateral precentral gyri (P FEW 

correctecd <0.0001, κ=50; Table 4). In contrast, bilateral 
cerebella, bilateral insular cortices, the right inferior 

 
short course VS patients after HIBI compared to normal controls (Displayed voxels are significant at PFWE-corrected <0.0001). 
Figure 4. SPM analysis showing spatial distribution of significant increase of brain metabolism in short course VS patients after HIBI 
compared to normal controls (Displayed voxels are significant at PFWE-corrected <0.0001). 
Figure 5. SPM analysis showing the brain areas in which brain metabolism correlates with the LOC measured by JFK coma recovery 
scale-revised in all patients with vegetative state after hypoxic-ischemic brain injury (Displayed voxels are significant at Puncorrected <0.005). 

 
Table 3. Brain metabolism in short course patients (13 cases within 7 months after onset) of VS following HIBI compared with normal 

controls (P FWE corrected <0.0001, κ=50). 

Brain metabolism Area 
Coordinate 

t score Cluster 
x y z 

Decrease       
Left side 
Right side 
Right side 
Right side 
Right side 
Right side 
Left side 
Left side 

Increase 
Right side 
Right side 
Left side 
Left side 
Right side 
Mid 

Middle occipital gyrus –48 –74 14 20.45 10197 
Precuneus 8 –68 32 18.25 10197 

Inferior occipital gyrus 42 –88 –6 16.79 10197 
Middle frontal gyrus 48 14 52 13.13 1145 

Superior frontal gyrus 24 10 68 13.11 1145 
Precentral gyrus 30 –12 70 12.78 1145 
Precentral gyrus –38 –8 66 11.66 325 

Middle frontal gyrus –38 6 60 10.96 325 
      

Cerebellum 24 –58 –50 10.59 1602 
Insula 38 –6 24 10.77 92 

Cerebellum –24 –52 –50 10.34 237 
Insula –34 –8 24 10.29 64 

Inferior frontal gyrus 24 38 0 9.63 66 
Brainstem – – – – –    

 

Figure 1. SPM analysis showing
spatial distribution of significant
decrease of brain metabolism in
patients with VS after HIBI
compared to normal controls
(Displayed voxels are significant
at PFWE-corrected <0.0001). 
Figure 2. SPM analysis showing
spatial distribution of significant
increase of brain metabolism in
patients with VS after HIBI
compared to normal controls
(Displayed voxels are significant
at PFWE-corrected <0.0001). 
Figure 3. SPM analysis showing
spatial distribution of significant
decrease of brain metabolism in
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Table 4. Brain metabolism in patients with VS following HIBI according to the etiologies (cardiac arrest vs. respiratory failure) compared 
with normal controls (P FEW corrected <0.0001, κ=50) 

Etiology of HIBI Area 
Coordinate 

t score Cluster 
x y z 

Cardiac arrest       
Decrease       

Right side 
Left side 
Right side 
Left side 
Left side 
Right side 
Right side 
Right side 
Left side 
Left side 

Superior parietal gyrus 30 –51 68 18.57 137 
Middle occipital gyrus –48 –76 14 15.92 214 

Precuneus 6 –64 32 15.41 947 
Precuneus –6 –50 44 14.44 947 

Superior parietal gyrus –28 –72 56 14.10 382 
Middle occipital gyrus 30 –96 8 14.04 155 
Inferior occipital gyrus 36 –94 –2 13.87 155 
Middle temporal gyrus 60 –66 12 12.42 52 
Inferior occipital gyrus –46 –82 –6 11.56 214 
Superior occipital gyrus –16 –86 42 11.69 382 

Increase        
Right side 
Left side 
Right side 
Mid side 

Insula 38 –4 24 12.43 76 
Cerebellum –10 –38 –38 10.73 503 
Cerebellum 26 –48 –48 9.79 503 
Brainstem – – – – – 

Respiratory failure       
Decrease        

Left side 
Right side 
Right side 
Right side 
Right side 
Right side 
Left side 
Left side 

Middle occipital gyrus –48 –74 14 20.45 10197 
Precuneus 8 –68 32 18.25 10197 

Middle occipital gyrus 42 –88 6 16.79 10197 
Middle frontal gyrus 48 14 52 13.13 1145 

Superior frontal gyrus 24 10 68 13.11 1145 
Precentral gyrus 30 –12 70 12.78 1145 
Precentral gyrus –38 –8 66 11.66 325 

Middle frontal gyrus –38 –6 60 10.96 325 
Increase        

Right side 
Right side 
Left side 
Left side 
Right side 
Mid 

Cerebellum 24 –58 –50 10.59 1602 
Insula 38 –6 24 10.77 92 

Cerebellum –24 –52 –50 10.34 237 
Insula –34 –8 24 10.29 64 

Inferior frontal gyrus 24 38 0 9.63 66 
Brainstem – – – – –    

 
frontal gyrus, and the brainstem showed significant 
increased brain metabolism in patients with VS following 
respiratory failure induced HIBI compared with normal 
controls (P FEW correctecd <0.0001, κ=50; Table 4). 
 
Correlation analysis between the level of 
consciousness and brain area 
Table 3 and figure 5 show the results of SPM correlation 
analysis between the regional brain metabolism and LOC 
measured by JFK CRS-R in each patient of 17 cases. The 
JFK CRS-R score was positively correlated with brain 
metabolism in bilateral fusiform gyri and superior 
temporal gyri (P uncorrected <0.005, κ=50). 
 

Table 5. Correlations between brain metabolism and JFK CRS-R 
score in all patients (P uncorrected <0.005, κ=50) 

Side Area 
Coordinate 

t score Cluster
x y z 

Right Fusiform gyrus 36 –44 –22 7.07 644 
Right Superior temporal gyrus 62 8 –6 5.23 101 
Left Fusiform gyrus –30 –44 –20 4.24 403 
Left Superior temporal gyrus –66 –20 16 4.01 67 

 
DISCUSSION 

 
In our study, patients with VS after post-resuscitated HIBI 
showed widespread brain hypometabolism in the bilateral 

frontal, parietal including the precuneus and the posterior 
cingulate gyrus, and occipital areas. Also, the 
hypermetabolic brain areas were detected in the bilateral 
insular, cerebellum and brainstem. 
 
Recent development in neuroimaging methods has 
allowed better estimation of the effects of HIBI on the 
brain. The magnetic resonance imaging (MRI), single 
photon emission computed tomography (SPECT), and 
PET images have become increasingly valuable in the 
work-up of patients with HIBI. As more effective 
treatment strategies developed, brain imaging tools have 
the significant role in diagnosis and intervention since 
they provide information on the severity and extent of 
HIBI and can be helpful in predicting long-term 
outcome.8,9 However, the results of neuroimaging in 
patients with HIBI are highly variable depending on a 
number of factors, including the type of injury, the 
duration of insult and timing of imaging studies.8 
 
According to the definition by the Multi-Society Task 
Force1 and the Royal College of Physicians,10 patients in 
VS are fully aroused, but are short of awareness for 
themselves and environment. The reticular activating 
system in the brainstem which normally modulates 
wakefulness is preserved to allow the maintenance of an 
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arousal state in the VS.11 From the SPM analysis, our 
findings also demonstrated that, compared to normal 
controls, patients with VS after post-resuscitated HIBI 
showed increased brain metabolism in the brainstem 
which suggest the maintenance of arousal state. 
 
The overall brain metabolism of comatose patients from 
HIBI is 50%–70% that of normal healthy subjects.12 In 
VS, the global brain metabolic activity also decreases to 
40%–50% of the normal healthy subjects.13 Also, the 
frontoparietal cortex including the precuneus, posterior 
cingulate gyrus,14,15 which is most active area in subject 
with conscious waking,16 is known as a significantly 
impaired brain lesion in patients with VS. Our findings of 
widespread hypometabolic area in the precuneus, the 
posterior cingulum, and the frontoparietal area in all 
patients with VS after post-resuscitated HIBI is consistent 
with previous studies.17-19 In addition, fourteen patients 
enrolled in this study failed to demonstrate a reflexive 
visual response from JFK CRS-R, which can explicate 
the significant hypometabolism in the occipital area 
regardless of the duration of insult. The mechanism of 
injury to the occipital cortex is unclear, however it can be 
postulated that the diffuse hypoxia affects the watershed 
region, a well-known border zone between arterial 
territories.4,20 Also, the comparison of brain metabolism 
according to the etiologies showed that the HIBI from 
cardiac arrest was more involved in the parietal area, but 
the HIBI from respiratory failure more in the frontal 
cortex, which can be explained that the type of injury 
affects the different brain area. 
 
Interestingly, we observed hypermetabolism not only in 
the brainstem, but also in the insular cortex and the 
cerebellum. The reciprocal connectivity of insular cortex 
with brainstem participates in the cardiovascular 
representation.21 Benarroch22 hypothesized the role of 
insular cortex as an internal regulatory system of the 
central autonomic network, and Oppenheimer et al23 
clarified the cardiovascular dysfunction induced by the 
injury to the insular cortex.24 The research from 
Williamson et al25 also reported that the insular cortex 
played a crucial role in cardiovascular adjustments within 
the central autonomic network. In addition, 
state-dependent regulation from insular area connected 
with subcortical structures may be involved in 
cardiovascular control.26 Our findings of brain 
hypermetabolism in the insular cortex in patients with VS 
after HIBI could be suggested as the long-term 
maintenance of cardiovascular adjustment after 
resuscitation by regulation of the central autonomic 
network. The cerebellum receives mainly afferent inputs 
from the vestibular system, the sensory receptors of the 
extremities and the trunk. Rudolf et al27 reported that the 
cerebellum is the brain area relatively spared from 
neuronal loss following HIBI. Beuthien-Baumann et al28 
hypothesized that relatively preserved input from the 
body, in contrast to decreased input from the cerebral 
hemispheres, could lead to a higher neuronal activity of 

the cerebellum in the VS. Our result of the preserved 
brain metabolism in the cerebellum is consistent with the 
previous studies.14,27,28 Nevertheless, the underlying 
mechanism of increased metabolism and the precise role 
of the insular area and the cerebellum in patients with VS 
after post-resuscitated HIBI remain to be elucidated in the 
further study. 
 
The reliable evaluation of the residual cognitive 
processing is of foremost importance for the appropriate 
management of patients with the VS. Objective 
assessment of LOC can be extremely difficult, as the 
response may be inconsistent, minimal, and difficult to 
document. However, the previous studies have indicated 
that functional neuroimaging may have an important role 
to play in the identification of residual cognition in the 
VS patients. The findings from Menon and Owen et al29,30 
and others31,32 that visual stimulation by presenting 
photographs of a familiar face and meaningless picture to 
patient with VS activated the fusiform area, and auditory 
stimulation by meaningless sound activated the superior 
temporal cortex in patients with VS suggested the 
preserved cortical activity in VS. The results of our SPM 
analysis that the brain function in the fusiform and the 
superior temporal gyri is correlated with the LOC can be 
postulated the preserved cortical function in the temporal 
area in patients with VS after post-resuscitated HIBI. 
 
Several limitations of the current study should be 
considered. First limitation relates to the lack of 
investigation of brain metabolism in the long course VS 
patients (more than 7 months after injury), which 
represents the change of brain metabolism according to 
the duration from injury. Second, it would be better and 
more clinically applicable if we were able to compare the 
changes of the LOC with initial PET image in each 
patient, which may provide the regional brain 
involvement associated with the recovery of 
consciousness from VS after post-resuscitated HIBI. 
However, we could not conduct the follow-up assessment 
of LOC in each patient. 
 
In conclusion, our study suggests that the precuneus, the 
posterior cingulate area, and the frontoparietal cortex 
which is a component of neural correlate for 
consciousness, may be a relevant structure for impaired 
consciousness in patient with VS after post-resuscitated 
HIBI. In post-resuscitated HIBI, measurement of brain 
metabolism may be helpful for investigating the brain 
function that cannot be obtained by morphological 
imaging and can be used to assess the brain area 
responsible for consciousness. A better understanding of 
the underlying mechanism for impaired consciousness 
will contribute to optimizing therapeutic intervention for 
the HIBI. 
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