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Purpose: The aim of this study was to investigate whether pathologic changes in
zonula occludens-1 (ZO-1) are induced by interleukin-13 (IL-13) in the experi-
mental minimal-change nephrotic syndrome (MCNS) model and to determine
whether montelukast, a leukotriene receptor antagonist, has an effect on ZO-1 res-
toration in cultured human podocytes. Materials and Methods: Human podo-
cytes cultured on bovine serum albumin-coated plates were treated with different
doses of IL-13 and montelukast and then examined for distribution using confocal
microscopy and for ZO-1 protein levels using Western blotting. Results: ZO-1
was internalized and shown to accumulate in the cytoplasm of human podocytes
in an IL-13 dose-dependent manner. High doses (50 and 100 ng/mL) of IL-13 de-
creased the levels of ZO-1 protein at 12 and 24 h (both p<0.01; n=3), which were
significantly reversed by a high dose (0.5 uM) montelukast treatment (p<0.01;
n=3). Conclusion: Our results suggest that IL-13 alters the expression of ZO-1,
and such alterations in the content and distribution of ZO-1 may be relevant in the
pathogenesis of proteinuria in the MCNS model.

Key Words: Interleukin-13, zonula occludens-1, podocytes, leukotriene receptor
antagonists

INTRODUCTION

Although minimal-change nephrotic syndrome (MCNS) is the most common
cause of nephrotic syndrome during childhood, the various proteins involved in
the morphological and functional changes of cytoskeletal proteins in MCNS are
still elusive.! The hallmark of MCNS pathology is the foot process (FP) efface-
ment of podocytes. Physiologically, FPs remain wide open to serve as a passage
for glomerular filtrate and are held together by tenuous slit diaphragms (SDs) that
connect the filtration slits.> Glomerular SDs, a major selective barrier for proteins,
reside in the cell-to-cell contact sites between neighboring podocytes, which are
thought to be modified adherens junctions that consist of an increasing number of
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proteins, including nephrin, CD2-associated protein
(CD2AP), Neph-1, -2, and -3, podocin, and zonula oc-
cludens-1 (ZO-1).3

Recent studies have identified that increased interleu-
kin-13 (IL-13) expression can lead to podocyte injury and
induce a minimal-change-like nephropathy.*¢ Notably, Lai,
et al.” reported that overexpression of IL-13 caused down-
regulation of nephrin, podocin, and dystroglycan—all of
which are important molecules in maintaining SD integri-
ty—and a concurrent upregulation of B7-1 as well as MCNS
in a rat experiment model. Although receptors for IL-13
such as IL-13Ral and IL-13Ra2 have also been demon-
strated to exist in cultured podocytes,® the precise role of
IL-13 is still not clear in the pathogenesis of MCNS, and
there has been no report on the effects of IL-13 on cultured
human podocytes in vitro.

While ZO-1 was originally identified as a tight junction
component, this molecule was also found to be localized at
adherens junctions in podocytes.”'? ZO-1 is a cytosolic
scaffold that connects the cadherin-catenin complex and ac-
tin-based cytoskeletons.’ It is thought to play a key role in
adherens junctions through its interaction with various ad-
herens-junction proteins and the formation of multimolecu-
lar complexes.!® Therefore, we hypothesized that 1L-13
may play an important role in the development of protein-
uria in MCNS by exerting a direct effect on ZO-1 in human
podocytes.

Leukotrienes are proinflammatory arachidonic acid me-
tabolites produced by leukocytes, eosinophils, mast cells,
and macrophages via 5-lipoxygenase.'*'* Leukotrienes are
involved in inflammatory cell recruitment, bronchocon-
striction, vasodilatation, increased microvascular permea-
bility, exudation of macromolecules, and edema; these in-
teractions are well-described in the pathophysiology of
asthma.'*1¢ Although not studied extensively yet in the
field of nephrology, IL-13 is known to influence leukotri-
ene levels.”” By inhibiting the proinflammatory effects of
leukotriene, leukotriene receptor antagonist (LTRA) mon-
telukast may be useful in the treatment of MCNS. IL-13-
1112C/T polymorphism and the haplotype of IL-13 polymor-
phisms are also associated with LTRA drug responsiveness
and useful as a target for modulation of LTRA drug re-
sponsiveness.'” Therefore, the aim of our study was to in-
vestigate the effects of IL-13 on ZO-1 and to determine
whether LTRA could be effective in stabilizing the ZO-1
proteins in an experimental model of MCNS induced by
IL-13.

MATERIALS AND METHODS

Cell culture of human podocytes

Human conditionally immortalized podocytes (AB8/23),
primarily cloned from human glomerular cultures, were
characterized and generously provided by Dr. Moin A. Sal-
eem (University of Bristol, Bristol, UK). Human podocytes
were maintained in RPMI 1640 (WelGENE Inc., Daegu,
South Korea) supplemented with 10% heat-inactivated fetal
bovine serum (FBS), Insulin-Transferrin-Selenium-Pyru-
vate Supplement (ITSP; Wel GENE Inc.), and antibiotics.
Fresh media was supplied once every 2 days.

To stimulate human podocyte proliferation, cells were
cultivated at 33°C (permissive conditions) in a culture medi-
um supplemented with human recombinant ITSP to induce
expression of temperature-sensitive large T antigens. To in-
duce differentiation, podocytes were maintained at 37°C
(non-permissive conditions) for at least 2 weeks, and for
subcultures, 0.05% trypsin was used to detach cells from the
culture dishes.'®

IL-13 and montelukast treatment conditions

To imitate MCNS-like conditions, cells were incubated with
various concentrations of IL-13 (Peprotech Inc., Rocky Hill,
NJ, USA) during the indicated time periods (6, 12, and 24
h). IL-13 was administered in 3, 5, 10, 30, 50, and 100 ng/
mL doses into 0.5% RPMI with montelukast (Sigma-Al-
drich Inc., St. Louis, MO, USA) at 37°C.

Immunofluorescence staining

Human podocytes that were grown on type I collagen-coat-
ed glass cover slips were incubated at 37°C for 2 h and fixed
in 4% paraformaldehyde for 20 min. The cells were then
permeabilized in 0.1% tritonX-100 for 10 min, blocked with
10% FBS for 30 min, washed three times for 5 min in phos-
phate buffered saline (PBS), and labeled with monoclonal
rabbit anti-ZO-1 antibody (Invitrogen, Eugene, OR, USA).
Phalloidin-FITC (Sigma-Aldrich Inc.) was utilized to stain
F-actin. Primary antibody-bound specimens were incubated
with 1:1000 (v/v) Alexa 594 for red conjugates and Alexa
488 for green (Invitrogen), respective of secondary anti-
rabbit IgG, at room temperature for 40 min and at 37°C for
20 min without CO.. Nuclei were stained with 4’-6-diamid-
ino-2-phenylindole (DAPI) (1:1000) for 20 min in PBS.
Coverslips were mounted in aqueous mountant and viewed
with a fluorescence microscope (Leica TCS SP2 AOBS,
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Mannheim, Germany).

Western blotting

Confluent cell layers were incubated with additives for var-
ious time durations, and proteins were extracted using a
protein extraction solution PRO-PREP (Intron Biotechnolo-
gy, Seongnam, Gyeonggi, South Korea) containing phenyl-
methylsulfonyl fluoride, ethylenediamine tetraacetic acid,
pepstatin A, leupeptin, and aprotinin; protein concentrations
were then determined as previously described.”” To perform
Western blotting for ZO-1, 30 pg of boiled extracts were re-
solved on 10% SDS-PAGE gels and transferred to polyvinyl-
idene difluoride (PVDF) membranes (Millipore Corp., Med-
ford, MA, USA).

The membranes were then washed with methanol and
blocked in 5% fat-free milk before incubation with mono-
clonal rabbit anti-ZO-1 (Invitrogen). Anti-B-tubulin antibody
(Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA)
was used as a loading control. After incubation with horse-
radish peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology), protein bands were detected using
the enhanced chemiluminescence (ECL) detection system
(WEST-ZOL® plus; Amersham Biotech Ltd., Bucks, UK).
Density values are expressed as percentages of the control.
Data on densitometric analysis of the ZO-1/B-tubulin ratio

are expressed as meantstandard deviation.

Statistical analysis

Results are described as meantstandard deviation, as ap-

IL-13

propriate under different conditions. Statistical significance
was evaluated by the non-parametric Kruskal-Wallis analy-
sis or Student’s t-test. p values <0.05 were considered sig-
nificant.

RESULTS

Z.0-1 Distribution on confocal microscopy

Podocytes were double-stained for ZO-1 and F-actin, and
the cell nuclei were stained with DAPIL. ZO-1 in human
podocytes was highly expressed within the podocyte in the
cytoplasmic aspect of the FP membrane, adjacent to the in-
sertion of the SD, and colocalized with B-catenin (Fig. 1A).
Staining for ZO-1 was most intense in the cytoplasmic sur-
face of the podocyte FP. ZO-1 and F-actin did not overlap
and were located at different sites in the confocal images.
From low to high IL-13 concentrations, ZO-1 staining be-
came blurry, which indicated a relocalization of ZO-1 away
from the peripheral cell membrane. In the human podo-
cytes under IL-13 conditions, ZO-1 was internalized into
the cytoplasm from the peripheral cell membrane as IL-13
concentrations increased (Fig. 1A). These distributional
changes were also observed in F-actin, particularly at the
higher IL-13 concentrations (Fig. 1A). Moreover, in high-
resolution microscopy, ZO-1 was distributed to the cell
contact areas under physiologic conditions without IL-13
yet was redistributed and accumulated into the cytoplasm

around the nucleus during a 6-hour incubation period as IL-

IL-13

10 ng/mL

30 ng/mL

Fig. 1. Distributional changes in Z0-1 by IL-13 in human podocytes. Z0-1 was distributed at the peripheral cell membrane and colocalized with -catenin and
actin filament at cell-to-cell contact junctions. High concentrations of IL-13 suppressed and disrupted the inmunostaining and linearity of Z0-1 proteins, and
accumulated Z0-1 proteins into the cytoplasm around nucleus (A), which improved by treatment with 0.5 yM montelukast (B). Magnification: 1000x; Scale
bar=20 ym. Z0-1, zonula occludens-1; IL-13, interleukin-13.
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13 increased from 0 to 30 ng/mL (Fig. 1B). These results
suggest that IL-13 may have a substantial impact on the re-
distribution and rearrangement of ZO-1 molecules and may
also disrupt the cytoskeletal connections between F-actin
and a-catenin-f-catenin complex in a concentration-depen-
dent manner (Fig. 1A). The internalized ZO-1 proteins were
restored to the periphery by treatment with a high dose of
0.5 uM montelukast (Fig. 1B).

Z.0O-1 protein assayed by Western blotting

A major ZO-1 protein band was found at 205 kDa, and ZO-1
levels were compared with -tubulin. In human podocytes,
density values for ZO-1 protein tended to decrease with IL-
13 treatment in a dose-dependent manner at 12 and 24 h.
The highest dose (100 ng/mL) of IL-13 significantly de-
creased the amount of ZO-1 protein by 37.5% at 12 h and
by 39% at 24 h (both p<0.01; n=3) (Fig. 2). Similarly, a
dose of 50 ng/mL IL-13 significantly decreased the amount
of ZO-1 protein by 31.0% at 12 h and by 34.9% at 24 h
(both p<0.01; n=3) (Fig. 2). A dose of 10 ng/mL of IL-13
also decreased ZO-1 protein levels to a greater degree at 24
h (35.1%; p<0.05) than at 12 h (Fig. 2). The ZO-1 protein
levels that had been reduced by 30 ng/mL IL-13 were re-
stored by a high dose of 0.5 uM montelukast (p<0.01; n=3);
however, the reduced levels were not affected by only 0.2
UM of montelukast (Fig. 3). These results suggest that IL-

IL-13 (ng/mL)

Z0-1

13 may induce a minimal-change-like nephropathy through
a reduction in ZO-1 molecules, which can be reversed by a
high dose of the LTRA montelukast.

DISCUSSION

The main goal of this study was to determine whether patho-
logical changes in ZO-1 protein levels could be induced by
IL-13. We demonstrated a redistribution and reduction in
Z0O-1 proteins from human podocytes treated with IL-13.
The exposure of ZO-1 molecules to IL-13 caused ZO-1 to
move and accumulate internally toward the cytoplasmic ac-
tin filaments, suggesting that the observed redistribution
and reduction in ZO-1 proteins could be involved in the
pathogenesis of MCNS. These results are similar to our
previous studies that found that ZO-1 proteins in podocytes
were also affected by diabetic conditions, causing hyper-
permeability at early stages.?*?!

Recent studies have shown strong evidence that protein-
uria in MCNS is associated with cytokines and T cell dis-
orders that result in glomerular podocyte dysfunction,**
as well as B7-1 (CD80) that is expressed on the surface of
B cells. An increase in IL-13 production by CD3+, CD4+,
and CD8+ T cells was shown to mediate steroid-sensitive
nephrotic syndrome in relapse.** Of note, Lai, et al.” demon-
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Fig. 2. Effects of IL-13 on Z0-1 protein levels in cultured human podocytes as assayed by Western blotting. Z0-1 levels significantly decreased at IL-13 con-
centrations of more than 50 ng/mL at 12 and 24 h incubations, compared with the control. Data on the densitometric analysis of the Z0-1/B-tubulin ratio are
expressed as mean=SD. Control (100%): the value of (-). *p<0.05. 'p<0.01. Z0-1, zonula occludens-1; IL-13, interleukin-13.
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Fig. 3. Effects of montelukast on Z0-1 protein levels in cultured human podocytes assayed by Western blotting. Montelukast (0.5 uM) significantly increased
Z0-1levels in human podocytes treated with IL-13. *p<0.05. 'p<0.01. Z0-1, zonula occludens-1; IL-13, interleukin-13.

strated that IL-13-transfected rats developed a minimal-
change-like glomerulopathy, as characterized by significant
worsening of albuminuria over time, generalized swelling,
low serum albumin, and hypercholesterolemia. In IL-13-
transfected rats, light microscopy showed an absence of
significant glomerular changes; however, electron micros-
copy revealed up to 80% effacement of podocyte FPs, which
progressed the nephrotic syndrome.” Although the nephrot-
ic-range proteinuria was selective in IL-13-transfected rats,
no relationship between serum IL-13 and urinary albumin
excretion or serum albumin levels was observed.” Thus, our
study attempted to define the pathogenic relationship be-
tween IL-13 and ZO-1 protein in the development of podo-
cyte FP effacement with nephrotic-range proteinuria, espe-
cially in human podocytes.

The proteinuric conditions in MCNS are usually associat-
ed with ultrastructural changes in podocytes, with fusion,
widening, retraction, and gradual simplification of the high-
ly specialized interdigitating FPs, which are also accompa-
nied by alterations in the permselectivity of the SD glomeru-
lar filtration barrier and the linking of adaptor proteins,
including nephrin, podocin, CD2AP, catenins, and ZO-1.2
Maintenance of podocyte FP structure is pivotal for accu-
rate functioning of the glomerular filtration barrier. The FP
effacement results from the detachment of podocytes from
the glomerular basement membrane (GBM), and FP retrac-
tion leads to disintegration of the cytoskeletal structure and
linking adaptor proteins, abnormal movement of the FP

430

over the GBM, and reconstruction of the SD.>?* Permselec-
tivity of the glomerular filtration barrier, which is composed
of a charge-selective barrier and a size-selective barrier,
also plays a key role in restricting passage of plasma pro-
teins across the GBM and SD.»%

Z0 is a member of the membrane-associated guanylate
kinase homologue family of proteins characterized by their
PSD-95/discs-large/Zonula occludens-1 (PDZ) domain;
these proteins are critical regulators of tight and adherens
junction assembly.?” ZO connects several types of SD pro-
teins through its PDZ domain to the actin cytoskeleton. Al-
though ZO-1 was originally identified as a tight junction
component, ZO-1 migrates from its apical location down to
the level of the slit membrane at the capillary loop stage of
renal development, where it is observed in a punctuate pat-
tern along the filtration slits.”® There are three ZO proteins,
7Z0-1, -2, and -3, which are multi-domain polypeptides.?
Of these three molecules, ZO-1 has been proposed to be a
scaffolding protein between transmembrane and cytoplas-
mic proteins and possibly forms a link between actin and
the cadherin-catenin complex.”’ ZO-1 may also participate
in signaling events through tyrosine phosphorylation® and
binds directly to o-catenin and actin located on the FPs at
the insertions of the SD.?** ZO-1 forms a gasket that seals
off the intercellular spaces and restricts the movement of
proteins, water and solutes along the paracellular pathway
at tight junctions, maintaining the polarized distribution of
membrane proteins.”’ However, the functions of ZO-1 be-
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tween podocyte FPs are not to serve as a seal but to firmly at-
tach FPs to one another and to stabilize the FP layer against
the high filtration pressure at the SD, a modified adherens
junction rather than a derivative of the tight junction.

Downregulation of the glomerular gene and production
of SD proteins such as nephrin, podocin, and dystroglycan
has been reported in both experimental models of nephrop-
athy, such as puromycin nephropathy and adriamycin ne-
phropathy, and human kidney biopsies.*!**3 In these studies,
immunofluorescence staining showed reduced protein pro-
duction and staining intensity for nephrin, podocin, and dys-
troglycan, with a shift from a linear pattern to a discontinuous
and granular pattern, which returned to normal after steroid
treatment. Moreover, certain reports showed that changes in
the properties or production of ZO-1 may accompany renal
diseases associated with proteinuria.**** However, very little
is known about how the binding of proteins to ZO-1 is regu-
lated or how cell-signaling pathways control adherens as-
sembly and filtration barrier function, although many dif-
ferent pathways have been implicated.*® Thus, this study
explored the production of ZO-1 and the effects of IL-13
and LTRA on ZO-1 restoration in cultured human podo-
cytes. While Kurihara, et al.* did not show a quantitative
change in ZO-1 protein production in a puromycin amino-
nucleoside (PAN)-treated rat model, we found that ZO-1
proteins were redistributed and reduced in MCNS. In addi-
tion, IL-13 significantly decreased ZO-1 protein levels in
human podocytes of MCNS, whereas ZO-1 protein produc-
tion significantly increased in the rat models of PAN-in-
duced nephrosis.”’

The present study has several limitations: 1) we were un-
able to demonstrate all of the signaling pathways of IL-13 via
IL-13 receptor (a heterodimer of IL-4Ra and IL-13Ral) to
Z0O-1 proteins in podocytes, presumably cascading through
tyrosine phosphorylation of ZO-1. 2) Although IL-13 is
known to influence leukotriene levels and IL-13-1112C/T
polymorphism and the haplotype of IL-13 polymorphisms
are known to be significantly associated with LTRA drug
responsiveness,'” the mechanism of montelukast in MCNS
is not fully understood yet. 3) The efficacy of montelukast
as a useful, optional add-on treatment in MCNS should be
proven in in vivo experiments to reduce massive proteinuria
and potential side effects from corticosteroids. Despite these
limitations, the current study demonstrated the potential of
LTRA on the reduced ZO-1 proteins in the MCNS model
of human podocytes, whereas treatment with angiotensin-
converting enzyme inhibitors ameliorated the proteinuria

and restored the normal localization of ZO-1 at the SD in the
spontaneously proteinuric Munich-Wistar-Froemter rats.*
Additional future studies are necessary to elucidate the ex-
act mechanisms, efficacy, and proper dose of LTRA in the
in vivo treatment of MCNS in the future.

In conclusion, our study may provide a base for under-
standing the ZO-1 molecule in human podocytes. High con-
centrations of IL-13 increased the disruption of glomerular
filtration barrier in SD and FP effacement. ZO-1 proteins
were redistributed and reduced in IL-13-treated human podo-
cytes, which was significantly restored after treatment with
an LTRA montelukast. Therefore, our findings further
strengthen the hypothesis that IL-13 may alter the expression
of ZO-1 proteins, resulting in proteinuria, and also provide
an explanation for the plausible connection of Th2 cyto-
kines, MCNS, and atopy.
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