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TRAIP/RNF206 is required for recruitment of
RAP80 to sites of DNA damage
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RAP80 localizes to sites of DNA insults to enhance the DNA-damage responses. Here we

identify TRAIP/RNF206 as a novel RAP80-interacting protein and find that TRAIP is

necessary for translocation of RAP80 to DNA lesions. Depletion of TRAIP results in impaired

accumulation of RAP80 and functional downstream partners, including BRCA1, at DNA

lesions. Conversely, accumulation of TRAIP is normal in RAP80-depleted cells, implying that

TRAIP acts upstream of RAP80 recruitment to DNA lesions. TRAIP localizes to sites of DNA

damage and cells lacking TRAIP exhibit classical DNA-damage response-defect phenotypes.

Biochemical analysis reveals that the N terminus of TRAIP is crucial for RAP80 interaction,

while the C terminus of TRAIP is required for TRAIP localization to sites of DNA damage

through a direct interaction with RNF20–RNF40. Taken together, our findings demonstrate

that the novel RAP80-binding partner TRAIP regulates recruitment of the damage signalling

machinery and promotes homologous recombination.
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C
ellular DNA is under constant threats from multiple
sources. Deleterious DNA damage can be caused by
exogenous agents, including ultraviolet radiation and

ionizing radiation (IR), and can occur as a result of aberrant
endogenous events including DNA replication stalling/collapse
and mitotic errors1–4. In response to genotoxic stress, cells
activate DNA-damage response (DDR) that coordinates multiple
intricately controlled pathways, involving damage-sensing,
signalling and DNA repair factors, to ensure that these DNA
lesions are repaired accurately and genomic integrity is
maintained2,3. DNA double-strand breaks (DSBs) are the most
detrimental form of DNA lesions that, if left unrepaired, would
lead to genomic instability, such as chromosome translocation,
fusion, deletion or mutation5,6. To protect from these menaces,
cells utilize multiple DSB repair pathways at different stages
of the cell cycle, including non-homologous end-joining
(NHEJ), homologous recombination (HR) and alternatively
microhomology-mediated end joining7.

On DNA damage, post-translational modifications of histone
and repair proteins are induced rapidly as part of the DDR8–11.
The activated ataxia-telangiectasia mutated (ATM) immediately
phosphorylates H2AX, and the resulting gH2AX bound to DSB
ends creates a binding site for the MDC1 protein. The ATM and
MRE11 -RAD50 -NBS1 (MRN) complex then become associated
with MDC1 to promote the propagation of gH2AX signal at
DNA DSB ends. Next, phosphorylated MDC1 recruits additional
DNA repair factors, including RNF8/168 E3 ubiquitin ligase, to
the sites of DNA damage. The ubiquitination of histone H2A and
H2AX by RNF8/168 as part of the DDR is required for the
retention of 53BP1 and BRCA1 and provides an additional mark
for the recruitment of other DNA repair factors to allow proper
DNA repair of the DSBs12,13. One of these downstream effectors
of ubiquitinated histone H2A and H2AX is RAP80 (receptor-
associated protein 80). RAP80 mediates DNA DSB repair by
recruiting the BRCA1-A complex to DNA-damage sites through
CCDC98 (refs 14,15). Ubiquitin-interacting motif (UIM) of
RAP80 specifically recognizes Lys 63-linked histone
ubiquitination, H2A and H2AX, at sites of DNA damage16–18.
The translocation of the BRCA1-A complex to DNA-damage
sites has been shown to regulate the G2/M checkpoint and
DNA-damage repair and is required for cell survival19.

In addition to H2A and H2AX, histone H2B protein has been
shown to be ubiquitinated in response to DNA damage. During
transcription, histone chaperone FACT is recruited to transcrip-
tion-blocked sites, and subsequently recruits PAF and H2B
monoubiquitin E3 ligase, RNF20–RNF40 complex, to promote
displacement of H2A/H2B at the sites11. Recently, it has been
shown that monoubiquitination of H2B by RNF20 facilitates HR
repair10. RNF20 is recruited to DNA-damage lesions
independently of H2A and H2AX, and is required for the
recruitment of chromatin remodeller SNF2h ATPase and DNA
repair factors, BRCA1 and RAD51, to regulate the HR pathway10.
Therefore, histone modification by ubiquitination is important
for the regulation of chromatin structure and loading of DNA
repair factors, including BRCA1 and 53BP1 that determines the
DNA DSB repair pathway choice of either NHEJ or HR.

TRAIP (TRAF (tumour necrosis factor receptor-associated
factor)-interacting protein), also known as RNF206, interacts
with the TRAF signalling complex and negatively regulates the
signalling transduction of TRAF2-mediated nuclear factor-kappa
B activation20,21. TRAIP is essential for embryo development in
Drosophila that is encoded by NOPO (no pole)22. In addition,
TRAIP deficiency in mice results in embryonic lethality23. TRAIP
protein has a functional E3 ubiquitin ligase RING finger domain
at the N-terminal22,24. However, its substrates in response to
DNA damage have not been identified. Here we reveal that, as a

novel binding partner for RAP80, TRAIP targets RAP80 to DNA
lesions to regulate G2/M DNA-damage checkpoint control
and HR.

Results
Identification of TRAIP as a novel RAP80-binding protein.
RAP80 is one of the key molecules in DDR13–16. To gain further
insight into the molecular mechanisms of RAP80 in the DDR
pathway, we performed yeast two-hybrid screening with the
full-length RAP80 as a bait and a human HeLa cDNA library as a
prey (Fig. 1a). Among 2� 106 transformants, 37 positive
clones with the highest galactosidase activity were obtained
(Supplementary Table 1). The positive clones were analysed by
sequencing, and immediately TRAIP caught our attention as four
out of thirty-seven positive clones contained full-length (three
clones) or N-terminal truncated TRAIP (one clone; Fig. 1a). In
addition, the TRAIP is composed of conserved motifs including
RING, coiled coil (CC), leucine zipper and nuclear localization
signal, all of which are often found in factors implicated in DDR
or DNA repairs (Fig. 1a). To validate our initial screening, we
performed yeast two-hybrid screening again using RING domain-
deleted TRAIP as bait and identified one wild-type (WT) and one
N-terminal-deleted RAP80 as positive clones (Supplementary
Fig. 1). We further confirmed the potential interaction between
RAP80 and TRAIP, with defined yeast two-hybrid analysis
(Fig. 1b) and immunoprecipitation in cells overexpressing
SFB-RAP80 and Myc-TRAIP (Fig. 1c). To detect endogenous
TRAIP, we raised an anti-TRAIP antibody in the laboratory.
Western blot analysis demonstrated that the TRAIP antibody
detects both endogenous and overexpressed TRAIP
(Supplementary Fig. 2A,B), which disappeared when TRAIP is
depleted with short interfering RNA (siRNA) against TRAIP
(Supplementary Fig. 2C). Using this antibody, we proved for
endogenous TRAIP in the endogenous RAP80 immuno-
precipitates and noticed that the interaction was not altered in
response to DNA damage induced by IR, indicating that the
RAP80–TRAIP interaction is not promoted by DNA DSBs
(Fig. 1d). To identify critical domains of TRAIP responsible for
the RAP80 binding, we generated a series of deletion mutants
of Myc-tagged TRAIP (TRAIP-D1 to TRAIP-D6) and
co-transfected each of TRAIP deletion mutant with WT
Flag-tagged RAP80, followed by co-immunoprecipitation
(Fig. 1e, top). Although TRAIP-D1, -D3, -D4, -D5 and -D6
interact with RAP80, the TRAIP-D2 TRAIP mutant failed to do
so, indicating that the CC domain (residues 70–177) of TRAIP is
critical for its interaction with RAP80 (Fig. 1e, bottom and
Fig. 1i). These findings were further supported by the results
showing that the GST–TRAIP–CC fusion protein was solely
sufficient for binding to RAP80 (Supplementary Fig. 3A). This
result prompted us to align the human TRAIP amino-acid
sequences with those of TRAIP from other species. It turns out
that the CC domain of TRAIP is highly conserved among species,
implying that the CC domain is critical for the functions of
TRAIP (Fig. 1g). We then constructed a series of internal deletion
mutants of RAP80 (RAP80-D1 to RAP80-D6) to determine
which regions of RAP80 are important for its association with
TRAIP (Fig. 1f, top). Consistent with the yeast two-hybrid assay
results (Supplementary Fig. 1), we found that the C-terminal
region (residues 491–583) of RAP80 interacted with TRAIP
(Fig. 1f, bottom and Fig. 1i). The TRAIP-interacting domain of
RAP80 is corresponding to the zinc finger (ZF) motif of RAP80,
which is also highly conserved in vertebrates (Fig. 1h). In
addition, glutathione S-transferase (GST) pulldown experiment
proves that the ZF motif of RAP80 alone is sufficient for the
interaction with TRAIP (Supplementary Fig. 3B). Taken together,
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Figure 1 | Identification of TRAIP as a novel RAP80-binding protein. (a) Schematic structure of RAP80 and TRAIP. The grey line below RAP80 indicates

bait, and the two grey lines above RAP80 highlight the prey clones identified in the yeast two-hybrid screen. (b) Indicated protein expression vectors were

co-transformed into yeast AH109 cells and growing colonies were assessed on high stringent media. Blue colonies on the selective media indicate a

positive interaction. (c) Cell extracts from 293 T cells expressing SFB-RAP80 and Myc-TRAIP were immunoprecipitated with anti-Flag antibody and then

analysed by immunoblotting. (d) The interaction between endogenous TRAIP and RAP80. 293 T cells were exposed to 0 or 10 Gy of ionizing radiation and

harvested after 1 h. Immunoprecipitation was performed using control IgG or anti-RAP80 antibodies and then analysed by immunoblotting. (e,f) Upper

panel shows diagram of wild-type (WT) TRAIP and internal deletion mutants (e), and WT RAP80 and internal deletion mutants (f). Numbers indicate

amino acids. 293 T cells were co-transfected with plasmids encoding Flag-RAP80 and Myc-tagged TRAIP WT or deletion mutants (e), and Myc-TRAIP and

Flag-tagged RAP80 WT or deletion mutants (f). Cell lysates were subjected to immunoprecipitation with anti-Flag antibody and then analysed by

immunoblotting (bottom panel). (g,h) Amino-acid sequence alignment of the RAP80-binding region of TRAIP (g), and the TRAIP-binding region of RAP80

(h) in mammalian species. (i) Schematic illustration of the binding domain architecture of TRAIP and RAP80. See full blots in the Supplementary Fig. 14.
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these findings demonstrate that TRAIP is a novel binding partner
of RAP80.

TRAIP travels to DNA lesions via its C-terminal region. The
RAP80 translocalizes to sites of DNA lesions12–16. Since TRAIP
interacts with RAP80, we hypothesized that TRAIP might also
travel to the sites of DNA damage. To examine whether the
TRAIP localizes to sites of DNA damage, we employed laser
microirradiation that gives rise to limited amounts of DNA
lesions in localized nuclear regions. To visualize the TRAIP,
green fluorescence protein (GFP)-tagged TRAIP is constructed
and transiently expressed in U2OS cells. On microirradiation,
GFP–TRAIP was found to accumulate at the sites of DNA
damage (90% in U2OS cells), which is colocalized with gH2AX,
the marker for DNA damage (Fig. 2a). Using the TRAIP-specific
antibody, we also confirmed that the endogenous TRAIP
accumulates at the sites of laser-induced DNA lesions, which is
also colocalized with gH2AX (Fig. 2b). We next determined
specific regions of TRAIP responsible for its translocation
to DNA-damage sites. Cells transiently expressing each of GFP-
tagged TRAIP WT, D1, D2, D3, D5, D6 and A6 mutant (Fig. 2c)
were irradiated, and cells with positive GFP on laser stripes were
counted. We found that more than 80% of cells expressing TRAIP
WT, D1, D2, D3 and D5 were positive for GFP on the laser
stripes. However, interestingly, the TRAIP-D6 failed to
accumulate at the DNA lesions, indicating that the C terminus
of TRAIP, which is not responsible for RAP80 interaction, is
critical for TRAIP recruitment to the sites of DNA damage
(Fig. 2c). To exclude the possibility that altered protein
conformational change is attributed to the inability of the
TRAIP-D6 mutant to localize to the laser stripe, we tested the
recruitment of the C-terminal region of TRAIP (TRAIP A6
amino acids 390–469) to the sites of DNA damage on
microirradiation. As expected, the C-terminal region was solely
sufficient for localization to laser stripe (Fig. 2c). We further
confirmed the recruitment of WT TRAIP, C-terminal deletion
(TRAIP-D6), or C-terminal region (TRAIP A6), using a
mCherry-LacI-Fok I nuclease fusion protein that creates single
DSB in U2OS cells25. The Fok I D450A mutant, which is unable
to generate the DSB, could not induce the translocation of TRAIP
to the DSB site (Fig. 2d). Consistent with our previous data,
TRAIP WT and A6 mutant is colocalized with mCherry-Fok I
nuclease at the single DSB site (95% for WT and 90% for TRAIP-
A6 in U2OS), whereas D6 mutant failed to do so. Taken together,
these data demonstrate that TRAIP travels to sites of DNA
damage, and that the TRAIP localization is governed by the
C terminus, but the N terminus of TRAIP is critical for the
TRAIP–RAP80 interaction.

TRAIP is colocalized with RAP80 in distinct foci. We next
tested whether both TRAIP and RAP80 are recruited to the sites
of DNA lesions. As expected, recruitment of both GFP–TRAIP
and RFP-RAP80 to damage stripes was observed in cells receiving
laser irradiation (Fig. 2e). However, interestingly, we noticed
that overexpressed Flag-RAP80 and Myc-TRAIP form foci
that are colocalized even without DNA damage, implying that
TRAIP and TRAIP-binding proteins are located in some other
nuclear bodies in the absence of DNA damage (Fig. 2f). This
phenomenon allowed us to determine whether TRAIP forms
nuclear foci coinciding with RAP80 outside of DNA damage.
We transiently transfected with Myc-TRAIP expression vector
into 293 T cells and stained the cells with anti-RAP80 or -Myc
antibody. The majority of the endogenous RAP80 protein was
spread out in the nucleoplasm without forming foci in the
absence of exogenous TRAIP, while endogenous RAP80 nuclear

foci were increased when TRAIP was overexpressed regardless of
irradiation (Fig. 2g). It has been reported that RAP80 is retained
in PML nuclear bodies in the absence of DNA damage, and
RAP80 might translocalize to the sites of DNA lesions on DNA
damage26. As TRAIP increased the RAP80 nuclear foci without
IR, we examined whether the TRAIP localized to the PML nuclear
bodies. As expected, ectopically expressed TRAIP was found as
foci in the PML nuclear bodies (Supplementary Fig. 4A). More
specifically, most of Myc-TRAIP colocalized with PML I or IV to
the PML nuclear body (Supplementary Fig. 4B). These findings
suggest that TRAIP and RAP80 are not only recruited to DNA
lesions on DNA damage but also retained together in the PML
nuclear bodies in the absence of DNA damage.

TRAIP is an upstream factor for RAP80 translocalization.
Since TRAIP interacts with RAP80 and also travels to the sites of
DNA damage, we asked whether TRAIP regulates RAP80
recruitment to DNA-damage sites or conversely. To evaluate the
recruitment of TRAIP and RAP80 at DSBs, we first analysed the
kinetics of GFP-fused proteins’ accumulation on stripes after
laser microirradiation. Surprisingly, we discovered that the
accumulation of RAP80 at laser stripes was impaired in cells with
siRNA-mediated TRAIP depletion, whereas the accumulation of
TRAIP was completely normal in cells with RAP80 depletion
(Fig. 3a,b), indicating that TRAIP functions upstream of
RAP80 in DDR. The impaired RAP80 recruitment in cells with
TRAIP depletion was successfully rescued by expression of
siRNA-resistant WT TRAIP and TRAIP-D1 mutant lacking
the RING domain of TRAIP. However, co-transfection of
siRNA-resistant TRAIP-D2 and -D6 in cells with TRAIP
depletion failed to rescue the RAP80 recruitment, indicating that
the TRAIP–RAP80 interaction and translocalization of TRAIP to
the DNA lesion are critical for RAP80 translocation (Fig. 3c).
Since RNF8- and RNF168-mediated DNA-damage-signalling
cascade acts upstream of RAP80 recruitment, we tested whether
there is a functional connection between TRAIP and RNF8 or
RNF168. The IR-induced RNF8 or RNF168 focus formation
was merely affected by TRAIP depletion in 293 T cells, and
TRAIP accumulation kinetics was normal in U2OS cells with
RNF8 depletion (Supplementary Fig. 5A–C), suggesting that
TRAIP-dependent RAP80 recruitment to the sites of DNA
damage has no functional connection with the canonical
RNF8- and RNF168-mediated DDR. In addition, we found that
depletion of TRAIP results in severe suppression of IR-induced
focus formation of two additional factors, CCDC98 and Merit40,
both of which are associated with RAP80 in the BRCA1-A
complex (Supplementary Fig. 6A,B), implying that TRAIP
regulates the BRCA1-A complex recruitment through direct
interaction with RAP80. These findings were further supported
by the results, showing that chromatin localization of RAP80 on
IR was severely reduced in cells treated with siRNA against
TRAIP compared with control siRNA; meanwhile, IR-induced
chromatin localization of TRAIP was normal in cells treated with
siRNA against RAP80 (Fig. 3d). It is worth noting that the
expression level of RAP80 was not altered in cells treated with
siRNA against TRAIP-compared mock siRNA, and the level of
TRAIP was the same in the presence or absence of RAP80
(Fig. 3e).

The ZF motif of RAP80 is important for RAP80 translocalization.
Next, we investigated how TRAIP regulates the accumulation of
RAP80 at the sites of DNA damage. To evaluate kinetics of the
recruitment of TRAIP and RAP80 to DNA lesions, we employed
a real-time detection method for monitoring protein accumula-
tion at the laser stripes on microirradiation. Each of GFP–TRAIP
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Figure 2 | Subcellular translocalization of TRAIP to the DNA-damage site. (a) U2OS cells expressing GFP–TRAIP were subjected to laser

microirradiation. The laser stripes were examined for 10 min after the microirradiation. The percentage of cells with positive GFP on the laser stripes was

determined. More than 50 nuclei per condition. (b) U2OS cells were treated with laser microirradiation. After 30 min, the cells were fixed and stained with

anti-TRAIP and -gH2AX antibodies. (c) U2OS cells expressing indicated proteins were subjected to laser microirradiation (top), and the cells with positive

GFP on laser stripes (10 min after laser microirradiation) were presented with bar graph. More than 50 cells in each experiment. (d) mCherry-LacI-FokI was

co-transfected with indicated GFP-tagged expression vector into U2OS-DSB reporter cells. After 48 h, live cell imaging was performed with confocal

microscopy. GFP-positive cells over total counts were denoted. (e) U2OS cells expressing GFP–TRAIP and RFP-RAP80 were subjected to laser

microirradiation. Colocalization of TRAIP with RAP80 at laser-induced DNA lesions (10 min after laser microirradiation). (f) Immunofluorescence assays

were performed with 293 T cells expressing Flag-RAP80 and Myc-TRAIP. Cells with TRAIP and RAP80 positive were counted and presented with the bar

graph. More than 50 nuclei per condition. (g) Overexpressed TRAIP recruits the endogenous RAP80 to the nuclear sparkle. Immunofluorescence assays

were performed with 293 T cells expressing Myc-TRAIP using anti-Myc and anti-RAP80 antibodies. Percentage of RAP80-positive cells was determined.

More than 50 nuclei per condition. DAPI was used as an indicator for the nucleus. The results represent the average of three independent experiments in

each comparison. Error bars indicate the s.d.
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Figure 3 | TRAIP is critical for RAP80 recruitment to the sites of DNA lesions. (a–c) U2OS cells expressing GFP–RAP80 or GFP–TRAIP were transfected

with indicated siRNAs or siRNAs together with siRNA-resistant TRAIP WT, TRAIP-D1, -D2 or -D6. After 72 h, cells were subjected to laser microirradiation.

Laser stripes were examined at the indicated time points. The intensity of each laser stripe in each time point was determined by averaging values from

10 cells and was graphed in the right panel. Experimental strategy is illustrated. (d) Cell fractionation to determine protein localization in response to

DNA damage. The 293 T cells were transfected with control, RAP80 or TRAIP siRNA. After 48 h, the transfected cells were exposed to 0 or 10 Gy of

ionizing radiation for 1 h. The chromatin fractions were subjected to western blot analysis. (e) Western blot analysis for TRAIP or RAP80 protein level in

293 T cells transfected with indicated siRNAs. (f) Kinetics of GFP–TRAIP or GFP–RAP80 translocation to DSBs. Average intensity of the laser stripes from

10 cells was presented with graph. (g,h) GFP-tagged RAP80 WT or indicated mutant was individually transfected into U2OS cells. After 72 h, the cells were

subjected to laser microirradiation. The intensity of each laser stripe in each time point was determined by averaging values from 10 cells. Error bars

indicate the s.d. See full blots in the Supplementary Fig. 14.
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and GFP–RAP80 expression vector was transfected into U2OS
cells, and we were able to detect that both GFP–TRAIP and
GFP–RAP80 rapidly translocate to DNA-damage sites within
10 min after laser microirradiation (Fig. 3f). Notably, we observed
that the accumulation of GFP–TRAIP at DNA-damage sites
peaked at 30–40 min and gradually reduced thereafter, while
GFP–RAP80 remained steady up to 210 min (Fig. 3f), implying
that the TRAIP plays a key role in early point of RAP80
recruitment, but the RAP80, not TRAIP, might execute the rest of
DDR function. These data strongly suggest that, besides UIM
recognizing K-63-linked polyubiquitin chain, the ZF motif of
RAP80, responsible for TRAIP interaction, is required for its
appropriate targeting to DNA lesion. To exploit the coordination
of UIM and ZF motif of RAP80 for the recruitment of RAP80 to
DNA lesion, we used again the real-time detection method
for monitoring protein accumulation at the laser stripes. We
observed that the accumulation of TRAIP-interacting motif-
deleted mutant, RAP80-D5, was less than WT RAP80, but more
than UIM-deleted mutant (RAP80 DUIM; Fig. 3g and
Supplementary Fig. 7). However, surprisingly, in the very early
time points of the protein assembly at laser stripes, RAP80 D5
recruitment was slower than the RAP80 DUIM mutant, which
was reversed after 40 s (Fig. 3h), implying that TRAIP regulates
the initial recruitment of RAP80, which is dependent on the ZF
motif of RAP80. Consistently, the GFP–RAP80 DUIM/D5
mutant was merely found on the laser stripes, indicating that both
UIM and ZF domains of RAP80 are necessary for the recruitment
of RAP80 to the sites of DNA damage.

TRAIP promotes DDR and repair. Given the reported functions
of RAP80 in DDRs together with our findings described
above, we examined the possible scenario of TRAIP in the DDR
pathways, especially DNA-damage repair, checkpoint and IR
sensitivity. Indeed, the gH2AX foci slowly disappeared in HeLa
cells treated with TRAIP siRNA compared with control siRNA on
IR (Fig. 4a and Supplementary Fig. 8A). This phenomenon was
fully rescued by expression of siRNA-resistant WT TRAIP, but
not by TRAIP-D2 and -D6 (Fig. 4a), demonstrating that the
TRAIP–RAP80 interaction and the ability of TRAIP translocali-
zation to the sites of DNA damage is important for IR-induced
DNA lesion. Next, using the DR-GFP reporter system, we tested
whether depletion of TRAIP leads to HR defects. We found that
the efficiency of HR repair was reduced in TRAIP-depleted cells
(Fig. 4b and Supplementary Fig. 9A). To remove the off-targeting
effects of RNA interference (RNAi)-mediated knockdown of
TRAIP, restoration experiments were conducted using the
siRNA-resistant TRAIP WT expression vector. The reconstitution
in TRAIP-knockdown cells with TRAIP WT successfully rescued
HR repair efficiency, but TRAIP-D2, -D6 and -A6 failed to do so,
indicating that the TRAIP–RAP80 interaction and the C terminus
of TRAIP, which is responsible for TRAIP recruitment to DNA
lesion, are critical for promoting HR (Fig. 4b and Supplementary
Fig. 9A). These findings were further supported by the facts that
IR-induced BRCA1 recruitment to the sites of DNA damage was
severely impaired in the cells treated with siTRAIP (Fig. 4c). The
impaired IR-induced BRCA1 focus formation was rescued by
siRNA-resistant WT TRAIP expression, but not by TRAIP-D2,
-D6 and -A6 expression, demonstrating that TRAIP is an
upstream factor for RAP80-dependent IR-induced BRCA1 focus
formation (Fig. 4c). However, we noticed that non-homologous
end joining repair and 53BP1 focus formation are merely affected
by the depletion of TRAIP (Fig. 4d,e and Supplementary Fig. 9B),
suggesting that TRAIP is not implicated in non-homologous end
joining. It has been reported that inactivation of RAP80 and
BRCA1 results in defective G2/M checkpoint control. We tested

whether the loss of TRAIP would lead to similar defects in the
DDR. To this end, we determined mitotic cell population on IR,
and found that TRAIP-knockdown cells were unable to arrest in
G2 after IR, which was rescued by expression of WT siRNA-
resistant TRAIP, but not by TRAIP-D2, -D6 and -A6 (Fig. 4f and
Supplementary Figs 8B and 9C). Similarly, TRAIP-knockdown
cells displayed enhanced sensitivity to IR (Fig. 4g and
Supplementary Figs 8C and 9D), and the reconstitution in
TRAIP-knockdown cells with siRNA-resistant TRAIP WT
rescued the sensitivity to irradiation, while the TRAIP-D2, -D6
and -A6 did not (Fig. 4g and Supplementary Fig. 9D). These data
strongly suggest that TRAIP could be an additive factor for the
RAP80 and BRCA1 axes in DDR and homology-directed DSB
repair. To verify this idea, we performed genetic interaction
analysis between TRAIP and BRCA1 or RAP80 using systematic
siRNA-mediated individual and pairwise gene depletion. We
found that individual or dual knockdown of both TRAIP and
BRCA1 results in a similar level of detrimental effects on
IR-induced gH2AX focus formation, HR repair, checkpoint and
IR sensitivity, indicating that TRAIP is epistatic to BRCA1 in
DDR and repair (Supplementary Fig. 10A–E). The same epistatic
analysis revealed that TRAIP is also epistatic to RAP80 in
IR-induced gH2AX focus formation, checkpoint and IR
sensitivity (Supplementary Fig. 10). The molecular functions of
RAP80 in HR repair are still controversial, as some reports
demonstrate that RAP80 suppresses HR repair27,28; however,
there are other reports showing that depletion of RAP80 reduces
HR frequency19,29. We found that depletion of RAP80 slightly
reduces the HR frequency, but dual depletion of RAP80 and
TRAIP showed enhanced defects in HR repair comparable to
TRAIP depletion (Supplementary Fig. 10C). Taken together,
these data demonstrated that TRAIP is implicated in HR and
G2/M checkpoint control and that it plays an important role in
the regulation of RAP80 and functional downstream factors
including BRCA1.

RNF20–RNF40 regulates translocation of TRAIP to DSBs. Our
findings described above suggest that TRAIP acts upstream of
RAP80 recruitment to the sites of DNA damage. Then, the next
question to be addressed is the underlying molecular mechanism
of TRAIP recruitment to DNA lesions. In an attempt to clarify
the mechanism, we performed second yeast two-hybrid screening
with the full-length TRAIP as bait and a human HeLa cDNA
library as prey (Fig. 5a). Among 2� 106 transformants, a number
of positive clones with the highest b-galactosidase activity was
isolated. Sequencing analysis revealed two clones from HeLa
library encoding N-terminal-deleted RNF20 as positive clones
(Fig. 5a). To validate the association between RNF20 and TRAIP,
we performed immunoprecipitation assay with the cell lysates
transfected with Myc-TRAIP and SFB-RNF20 expression vectors
(Fig. 5b) and found that TRAIP interacts with RNF20. We further
confirmed that endogenous RNF20 also specifically binds to
endogenous TRAIP, and the TRAIP–RNF20 interaction was not
promoted in response to DNA damage induced by IR (Fig. 5c).
As RNF20 and RNF40 form a heterodimer and stabilize each
other9,30,31 (Supplementary Fig. 11), we tested whether TRAIP is
co-immunoprecipitated with RNF40. As expected, Myc-TRAIP
was detected in the immunoblot with eluates from the
immunoprecipitation with anti-Flag antibody (Fig. 5d). To
determine the TRAIP domain responsible for its interaction
with RNF20 and RNF40, cell lysates from cells expressing each of
TRAIP mutants (Fig. 1e) were subjected to immunoprecipitation
with anti-Flag antibody and the eluates were immunoblotted with
anti-GFP antibody (Fig. 5e,f,j). Interestingly, we found that
TRAIP-D6 mutant, the domain of which is critical for TRAIP
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Figure 4 | TRAIP is required for DNA-damage checkpoint and homologous recombination repair. (a) Counts of gH2AX foci at various time points after

1-Gy ionizing radiation in HeLa cells transfected with indicated siRNAs or combination of siRNA and siRNA-resistant WT TRAIP, TRAIP-D2 or -D6

expression vector. (b) Comparison of homologous recombination repair capacity in DR-GFP U2OS cells transfected with indicated siRNAs or combination

of siRNA and siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6. (c,e) 293T cells were transfected with indicated siRNA or combination of siRNA and

siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6. After 48 h, transfected 293 T cells were exposed to 10-Gy of ionizing radiation, followed by staining with

anti-BRCA1 (c), 53BP1 (e) or g-H2AX antibodies. DAPI was used as an indicator for the nucleus. The percentage of cells with positive BRCA1 or 53BP1 foci

from 100 counts was determined. (d) Non-homologous end joining repair assay was carried out in triplicates using U2OS cells harbouring NHEJ reporter

(EJ5-GFP). The reporter cells were transfected with indicated siRNA and the percentage of GFP-positive cells were analysed using flow cytometry.

(f) G2/M checkpoint in HeLa cells transfected with siRNAs or combination of siRNA and siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6. The

transfected cells were exposed to 0 or 2 Gy of ionizing radiation and subjected to staining with antibody to phosphorylated histone H3 and propidium

iodide. The percentages of mitotic cells were determined using flow cytometry. (g) Radiation sensitivity in HeLa cells transfected with siRNAs or

combination of siRNA and siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6. These experiments were performed in triplicate, and the results represent

the average of three independent experiments in each comparison. Error bars indicate the s.d.
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Figure 5 | RNF20–RNF40 regulates translocation of TRAIP to DSBs. (a) Schematic structure of TRAIP and RNF20. The grey line below TRAIP indicates

bait, and the grey line above TRAIP highlights the prey clone identified in the yeast two-hybrid screen. (b) Cell extracts from 293 T cells expressing Myc-

TRAIP and SFB-RNF20 were immunoprecipitated with anti-Flag antibody and then analysed using immunoblotting. (c) The interaction between

endogenous TRAIP and RNF20. 293 T cells were exposed to 0 or 10 Gy of ionizing radiation and harvested after 1 h. Immunoprecipitation was performed

using control IgG or anti-RNF20 antibodies and then analysed using immunoblotting. (d) Cell extracts from 293 T cells expressing indicated proteins were

immunoprecipitated with anti-Flag antibody and then analysed by immunoblotting. (e,f) Domains of TRAIP required for TRAIP–RNF20 or TRAIP-RNF40

interactions. 293 T cells were transfected with plasmids encoding GFP-RNF20 or GFP-RNF40 together with WT TRAIP or serial deletion mutants. Cell

lysates were subjected to immunoprecipitation with anti-FLAG antibody and then analysed by immunoblotting. (g) 293 T cells were transfected with

plasmids encoding SFB-RNF20 with Myc-TRAIP WT or D6 mutant. After 24 h, cell lysates were subjected to pulldown with streptavidin beads and

immunoblotted with the indicated antibodies. (h) U2OS cells expressing GFP–TRAIP were transfected with siRNF20 or siRNF20 and siRNA-resistant

RNF20 expression vector. After 72 h, cells were subjected to laser microirradiation. Laser stripes were examined at the indicated time points. The intensity

of each laser stripe in each time point was determined by averaging values from 10 cells and graphed in the bottom panel. Experimental strategy is

illustrated. Error bars indicate the s.d. (i) The 293 T cells were transfected with control, RNF20 or RNF40 siRNA. After 48 h, the transfected cells were

exposed to 0 or 10 Gy of ionizing radiation for 1 h. The chromatin fractions were subjected to western blot analysis. (j) Schematic illustration of the binding

domain architecture of RNF20/40, TRAIP and RAP80. See full blots in the Supplementary Fig. 14.
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translocalization to the sites of DNA damage, fails to interact
with both RNF20 and RNF40 (Fig. 5e,f). Consistently, TRAIP
was detected in RNF20-immunoprecipitated proteins by the
immunoblot, but TRAIP-D6 was not detected (Fig. 5g). On the
basis of these data we hypothesized that the translocalization of
TRAIP might be regulated by the RNF20–RNF40 complex, which
is an E3 ubiquitin ligase for H2B at the sites of DNA damage10.
To test the hypothesis, we measured the assembly of GFP–TRAIP
on the laser stripes in cells receiving siRNA against RNF20.
Notably, we discovered that the accumulation of TRAIP at DNA-
damage sites was reduced in RNF20-depleted cells, which was
rescued by expression of siRNA-resistant WT RNF20 (Fig. 5h).
The defect of TRAIP recruitment was further confirmed by cell
fractionation and western blot analysis. Chromatin localization of
TRAIP was significantly reduced in RNF20 or RNF40 siRNA-
transfected cells on IR (Fig. 5i). The expression level of TRAIP
was the same with or without RNF20 or RNF40 knockdown, and
TRAIP knockdown also does not change the expression of RNF20
or RNF40 (Supplementary Fig. 11). The findings described above
prompt us to test whether the RNF20–RNF40 heterodimer is
implicated in RAP80–BRCA1-dependent DDR. As expected, we
found that depletion of RNF20 leads to checkpoint defect,
enhanced IR sensitivity and reduced HR repair (Supplementary
Fig. 12A–C). Furthermore, IR-induced RAP80 and BRCA1 focus
formation was impaired in the 293 T cells with RNF20 depletion
(Supplementary Fig. 12D,E). However, consistent with the case in
cells with TRAIP depletion, IR-induced 53BP1 focus formation
was merely affected by siRNA-mediated RNF20 knockdown
(Supplementary Fig. 12F). Taken together, these data suggest that
the recruitment of TRAIP to the sites of DNA damage might be
regulated by the RNF20–RNF40 complex, which then might take
the RAP80–BRCA1 complex to the sites of DNA lesions.

Reduced expression of TRAIP in human lung cancer tissues.
Considering that the interaction between TRAIP and RAP80 is
critical for the maintenance of genomic instability by controlling
DDR and HR, the loss or downregulation of the expression of
either of these genes may be associated with pathophysiological
symptoms of, for example, cancer. To support this idea,
we verified TRAIP expression in human lung adenocarcinoma
patient tissues and matched normal adjacent tissues (Z2 cm away
from cancer) using a tissue microarray. The specificity of the
TRAIP antibody for immunofluorescent assay was verified
(Supplementary Fig. 13). We found that cytoplasmic expression
levels of TRAIP between tumour and normal tissues did not show
any significant difference. However, nuclear expression of TRAIP
in tumour tissues was markedly reduced compared with each
matched normal adjacent tissue (Fig. 6a). Nuclear TRAIP
expression in 75% cancer tissues was at least twofold lower than
that in each corresponding matched normal tissue. H-scoring in
every sample indicated that nuclear expression of TRAIP greatly
decreased in human lung cancer patient tissues (median H-score,
46.9) compared with that in each matched normal adjacent
tissues (median H-score, 156.6; Fig. 6b). Furthermore, we
observed an interesting inverse correlation between nuclear
expression of TRAIP and gH2AX foci in these tumours
(Fig. 6c,d). Increased levels of gH2AX foci were found in the
nucleus of the tumours with lower nuclear expression of
TRAIP while few gH2AX foci in the patient tissues with higher
expression of TRAIP (Fig. 6c). A scatter plot and Pearson
correlation coefficient analysis revealed a significant negative
correlation (r¼ � 0.32) between nuclear expression of TRAIP
and gH2AX foci (Fig. 6d). Together, these results suggest that low
level of nuclear TRAIP in human lung cancer might be involved
in incidence of genome instability—the hallmarks of cancer.

Discussion
In this study, we identified the TRAIP–RNF206 as a novel
binding partner of RAP80 and RNF20–RNF40 using a yeast two-
hybrid system. Our results demonstrate that TRAIP, an upstream
regulator for RAP80, play a key role in the recruitment of RAP80
to DNA lesions in a coordinative manner, with an already-known
K-63-lined polyubiquitin recognition at the sites of DNA damage.
TRAIP seems to be retained in the PML nuclear bodies together
with RAP80 in the absence of DNA damage (Supplementary
Fig. 4). Once DNA damage occurs, TRAIP might take the
RAP80 to the sites of DNA damage by the guidance of the
RNF20–RNF40 complex, which plays a key role in H2B
ubiquitination at the sites of DNA lesions.

Protein–protein interaction and post-translational modifica-
tion play key roles in the DDR pathway. RAP80, one of the
essential proteins in this pathway, is translocated to sites of DNA
damage through recognizing of lysine 63-linked ubiquitination of
H2A and H2AX by RNF8/168 E3 ligase, and recruits the BRCA1
complex to DNA-damage lesions to enhance HRR through
functional interaction of repair factors9–13. Furthermore, H2B
ubiquitination, which is a target of the RNF20–RNF40 complex,
is required for recruiting DDR factors to DSBs to promote HR
repair through chromatin relaxation in DDR10,11. However,
whether the two different pathways were regulated at the same
time or was independent was unclear. Chromatin remodelling
and histone modification quickly occur in DDR. The RNF20–
RNF40 complex is a well-known E3 ubiquitin ligase for H2B
monoubiquitination in transcription and DDR for chromatin
relaxation10,11. Moyal et al. suggested that the RNF20–RNF40
complex is involved in chromatin relaxation in DDR9. When the
RNF20–RNF40 complex is depleted, recruitment of HR and
NHEJ factors is reduced. However, on the depletion of TRAIP,
recruitment of the HR factors, BRCA1 is reduced, but recruitment
of the NHEJ factor, 53BP1, is not. These findings indicate that
TRAIP is recruited at DNA-damage lesions in RNF20–RNF40
dependency. TRAIP might coordinately function together with
RNF20–RNF40 for the H2B monoubiquitination at the sites of
DNA damage as TRAIP contains RING domain, although further
studies are required to clarify the issue. Our data demonstrate
that TRAIP has two separate domains, one is responsible for its
interaction with RAP80 through the N terminus, and the other
(C terminus) is critical for TRAIP’s localization to the sites of
DNA damage. Coincidently, we found that the responsible
domain of TRAIP for the interaction with the RNF20–RNF40
complex is the same as the one that is critical for the localization
of TRAIP to the DNA lesions (Fig. 5j). Furthermore, recruitment
of TRAIP to the microirradiation-induced DNA lesions is
severely impaired in the cells treated with siRNA against
RNF20. Taken together, possible mechanism for the TRAIP
translocalization might be guided by the RNF20–RNF40 complex.

TRAIP might be the responsible factor that takes RAP80 from
PML to damage lesions. As a result, TRAIP leads to recruitment
of the BRCA1 complex to adjacent DNA-damage lesions by
interacting with RAP80 to facilitate DNA-damage checkpoint and
HR repair. Since RNF8/168 is not regulated by depletion of
TRAIP, localization of 53BP1 is normally observed at DSBs.
However, in the absence of TRAIP, RAP80 is not translocated to
DSBs; thus, downstream targets of RAP80 and BRCA1 are
compromised to be retained at the damage lesions. It seems like
localization of RAP80 in PML nuclear bodies is dependent on
TRAIP even without DNA damage, suggesting that TRAIP may
control the function of RAP80 in PML nuclear bodies. There is
evidence that RAP80 binds to ubiquitinated BLM localized at
PML nuclear bodies26. Furthermore, ATM, BRCA1, Mre11,
HIPK2, Ubc9 and p53, which are involved in the DDR pathway,
are also localized at PML nuclear bodies32. Whether the proteins
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in PML nuclear bodies are also regulated by TRAIP-dependent
ubiquitination warrants study.

Our findings suggest that TRAIP translocates RAP80 from
PML nuclear bodies to the sites of DNA damage through
interaction with the CC domain of TRAIP and C-terminal region
ZF of RAP80. RAP80 translocates to DNA-damage lesions by the
UIMs in the N terminus of RAP80 on DNA damage13–16.
However, C-terminal-deleted RAP80-mutant D5 is inefficient in
accumulating at sites of DNA damage, and RAP80 is also slowly
translocated to DNA lesions when TRAIP is downregulated,
suggesting that the TRAIP-interacting domain of RAP80 and
UIMs of RAP80 are essential for adjusting recruitment/
accumulation in response to DNA damage.

Reduced expression level of TRAIP is associated with a human
lung adenocarcinoma. Together with our findings in DDR and
HR, the clinical relevance of TRAIP emphasizes the important
physiological roles of TRAIP, as well.

Methods
Plasmids. The SFB-RAP80, RAP80 D-1, D-2, D-3, D-4, D-5 and D-6 deletion
mutant expression plasmids were previously described14,16. GFP-tagged
RAP80, RAP80 DUIM, D5 and D5/DUIM expression plasmids were cloned into

GFP-tagged mammalian expression vector. Red fluorescent protein (RFP)-tagged
RAP80 expression plasmid was cloned into RFP-tagged mammalian expression
vector. TRAIP gene was purchased from the Korea Human Gene Bank. The
Myc-tagged TRAIP expression plasmid was cloned into Myc-tagged mammalian
expression vector, and GFP-tagged TRAIP, D6 and A6 expression plasmids were
cloned into GFP-tagged mammalian expression vector. TRAIP D-1, D-2, D-3, D-4,
D-5 and D-6 deletion mutants were generated by mutagenesis using a Myc-tagged
TRAIP expression plasmid. PML expression plasmids were cloned into Flag-tagged
mammalian expression vector.

Yeast two-hybrid screening. The cDNA of RAP80 or RING domain-deleted
TRAIP was subcloned into pGBKT7 as the bait. The two-hybrid screening followed
the manufacturer’s instruction (Clontech). A HeLa cell cDNA library in pACT2
was used as the prey to screen E2� 106 colonies. The bait and the library DNAs
were co-transformed into AH109 yeast strain using the lithium acetate method.
The transformants were selected for growth on the Leu� , Trp� , His� and Ade�

solid media containing 30 mM 3-aminotriazole. The b-galactosidase assay was
performed by four incubating freeze-fractured colonies on nitrocellulose in
Z-buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4,
0.03 mM b-mercaptoethanol and 2.5 M X-gal) at 30 �C for 30 min.

Cell culture. U2OS, HeLa, H1299 and human embryonic kidney 293T cell lines
were purchased from American Type Culture Collection (Manassas, VA). HeLa
and 293T cell lines were maintained in DMEM (Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum (Gibco, Franklin Lakes, NJ)
and 1% penicillin/streptomycin (Gibco) at 37 �C in 5% v/v CO2.
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Figure 6 | Reduced expression level of TRAIP in human lung adenocarcinoma. (a) Immunohistochemical staining of TRAIP in human lung cancer patient

tissues and matched normal adjacent tissues. Red squares indicate the magnified region shown to the right panel. (b) Box-and-Whisker plots of nuclear

TRAIP H-scores in lung adenocarcinomas and matched normal adjacent tissues. Po0.0001 (n¼ 72 for tumour; n¼ 71 for normal adjacent tissues).

(c) Immunohistochemical staining of TRAIP and gH2AX in human lung cancer patient tissues. Enhanced gH2AX foci in the patient tissues with lower

nuclear expression of TRAIP (upper panel) and few gH2AX foci in the tissues with higher nuclear expression of TRAIP (lower panel). Black squares indicate

the magnified region shown to right panel. Scale bar, 50mm. (d) Pearson correlation coefficient between nuclear TRAIP expression and percentage of cells

with gH2AX foci. Graph presents the scatter plot of H-score of nuclear TRAIP (y axis) and cell percentage with gH2AX foci (x axis). Po0.05 (n¼ 64).
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siRNAs. Control and RAP80 siRNAs were previously described14,16. siTRAIP #1:
50-GCAGCAGGAUGAGACCAAAUU-30 , siTRAIP #2: 50-GCAAGUUGCAGA
CAGUCUAUU-30, siRAP80: 50-GAAGGAUGUGGAAACUACCUU-30 , siRNF20:
50-GCUAAAAGAGUCAGAAAAAUU-30 , siRNF40: 50-GAUGCCAACUUUAA
GCUAAUU-30 , siBRCA1: 50-UCACAGUGUCCUUUAUGUAUU-30 , siRNF8;
50-GAGAAGCUUACAGAUGUUUUU-30 . siRNAs were transfected into cells
using Lipofectamine RNAiMAX reagnent (Invitrogen).

Antibodies. Anti-RAP80 and -gH2AX antibodies were previously described14,16.
Anti-TRAIP antibody was raised by immunizing rabbits with GST–TRAIP fusion
protein. Anti-TRAIP (PA5-27699, Thermo Fisher Scientific) was used for
immunohistochemistry. Rabbit RAP80 and TRAIP polyclonal antibody were
affinity-purified using the Sulfolink Plus Immobilization and Purification Kit
(Pierce, Rockford, IL). Anti-Flag (F3165) and -Actin (A5316) antibodies were
purchased from Sigma (St Louis, MO). Anti-Myc antibody (11814150001) was
purchased from Roche (Basel, Switzerland). Anti-Tubulin (05-829) and -H2B
(07-371) antibodies were purchased from Millipore. Anti-BRCA1 (6954) and -PML
(966) antibodies were purchased from Santa Cruz. Anti-53BP1 (4937), -RNF40
(12187) and -phospho H3 (9701) antibodies were purchased from Cell Signaling.
Anti-ORC2 antibody (559266) was purchased from BD Science. Anti-RNF20
antibody (33500) was purchased from Abcam. Anti-GFP antibody (632381) was
purchased from Clontech. The dilutions of the various antibodies for western blot
analysis were as follows: anti-RAP80, 1:1,000; anti-TRAIP, 1:400; anti-FLAG,
1:2,000; anti-Myc, 1:2,000; anti-Tubulin, 1:5,000; anti-ORC2, 1:2,000; anti-H2B,
1:2,000; anti-Actin, 1:5,000; anti-BRCA1, 1:400; anti-RNF20, 1:2,000; anti-RNF40,
1:2,000; and anti-GFP, 1:2,000. The dilutions of the various antibodies for
immunofluorescence were as follows: anti-TRAIP, 1:400; anti-RAP80, 1:400;
anti-FLAG, 1:200; anti-Myc, 1:200; anti-BRCA1, 1:200; anti-53BP1, 1:200;
anti-PML, 1:100; and anti-g-H2AX, 1:100.

Transfection and immunoprecipitation. Transient transfection was performed
using poly(ethylenimine). For immunoprecipitation, cells were washed with ice-
cold PBS and then lysed in NETN buffer (0.5% Nonidet P-40, 20 mM Tris (pH 8.0),
50 mM NaCl, 50 mM NaF, 100mM Na3VO4, 1 mM dithiothreitol and 50mg ml� 1

phenylmethylsulfonyl fluoride) at 4 �C for 10 min. Crude lysates were cleared by
centrifugation at 14,000 r.p.m. at 4 �C for 5 min, and supernatants were incubated
with protein A-agarose-conjugated primary antibodies. The immunocomplexes
were washed three times with NETN buffer and subjected to SDS–PAGE. Western
blotting was performed using the antibodies indicated in the figure legends.
Uncropped blots are provided in the Supplementary Fig. 14.

G2/M cell cycle checkpoint assay. HeLa cells in a 100-mm-diameter plate were
transfected twice with indicated siRNAs at 24-h intervals. Forty-eight hours after
the second transfection, transfected cells were mock-treated or irradiated at the
indicated doses using a radiation source. One hour after irradiation, cells were
fixed with 70% (v/v) ethanol at –20 �C for 24 h, and then stained with rabbit
antibody to pH3 and incubated with fluorescein isothiocyanate-conjugated goat
secondary antibody to rabbit immunoglobulin. The stained cells were treated with
RNase A, incubated with propidium iodide and analysed using flow cytometry.
Reconstitution assay was carried out in HeLa cells transfected with siTRAIP
together with siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6 expression
vector.

Laser microirradiation and imaging of cells. Single strand breaks or DSBs of
DNA were induced using a Nikon A1 laser microdissection system (Nikon). U2OS
cells in four-well plates were transfected with indicated GFP-tagged expression
vector for 48 h and then were incubated with 10 mM of 5-brome-20-deoxyuridine
for 24 h before laser-induced DSBs. Ten cells per well were subjected to laser-
induced DSBs during 10 s using the � 60 oil objective. Fixed wavelength of
ultraviolet A laser (405 nm) was used for laser microdissection in the temperature-
controlled chamber with CO2 supplier. After laser treatment, cells were incubated
at 37 �C for the indicated times. The intensity of each laser stripe in each time point
was determined using confocal microscope. The kinetic analyses were performed
using the NIS elements C software (Nikon). Each data series was normalized with
respect to baseline values. Reconstitution assay has been carried out in U2OS
cells transfected with TRAIP siRNA together with siRNA-resistant WT TRAIP,
TRAIP-D2 or -D6 expression vector.

Cell survival assay. HeLa cells in a 60-mm-diameter plate were transfected twice
with the indicated siRNAs at 24-h intervals. Forty-eight hours after the second
transfection, transfected cells were irradiated at the indicated doses using a
radiation source. Fourteen days after irradiation, cells were washed with PBS,
fixed, stained with 2% (w/v) methylene blue, and the colonies were counted.
Reconstitution assay was carried out in HeLa cells transfected with siTRAIP
together with siRNA-resistant WT TRAIP, TRAIP-D2, -D6 or -A6 expression
vector.

HR and non-homologous end joining assay. HR and non-homologous end
joining assay were adapted from previous report33. Trypsinized 8� 104 U2OS
DR-GFP or U2OS EJ5-GFP cells were reversely transfected with siRNA (with a
final concentration of 25 nM) in a 12-well dish using Lipofectamine RNAiMAX
(Invitrogen), as suggested by the manufacturer. Forty-eight hours later, the cells
were transfected with 0.8 mg of I-SceI expression vector, or together with 0.4 mg of
siRNA-resistant protein expression vector for reconstitution experiment, using
Lipofectamine 2000 (Invitrogen). Seventy-two hours after I-SceI transfection, cells
were trypsinized, and the percentage of GFP-positive cells was determined using
flow cytometry.

FokI assay. U2OS cells, containing the stably FokI restriction enzyme site, in
24-well plates were transfected with 0.4 mg of LacI-mCherry-FokI expression
plasmid with 0.4 mg of GFP-fused TRAP WT, deletion mutant D6 or C-terminal
region mutant A6. After 48 h, live cell imaging was performed with confocal
microscopy.

Tissue microarrays and immunohistochemistry. A lung adenocarcinoma
tissue array (HLug-Ade150Sur-01) containing 75 cases of human lung adeno-
carcinoma patient tissue (64 adenocarcinomas, 7 bronchioloalveolar carcinomas,
3 mucoepidermoid carcinomas and 1 mucinous adenocarcinoma) and each
matched normal adjacent tissue was obtained from US Biomax Inc. (Rockville,
MD, USA). The classic method was used in immunohistochemistry to detect
TRAIP and gH2AX34. Primary antibody against TRAIP (PA5-27699, Thermo
Fisher Scientific) and gH2AX (ab11174, Abcam) were used at a concentration of
1:100 and 1:100, respectively. The staining intensity was assigned an arbitrary
value, on a 4 scale (intensity score) as follows: non-stained (0), weak (1), moderate
(2) and strong (3). The H-score was calculated by multiplying the intensity score
and the fraction score (percentage of counted samples at each scale), producing the
range 0–300, and repeated on three different areas. Cells with nuclear gH2AX foci
on two to three different areas were counted and converted into percentages. Total
counted cells in each sample were 70–100.

Statistical analysis for immunohistochemistry. Statistical analysis was
performed using the Prism 5 programme (GraphPad Software, San Diego, CA,
USA). A Box-and-Whisker plot was used to compare the distribution of each
sample in the groups. Comparison of TRAIP expression in the nucleus of tumour
and adjacent non-tumour groups was analysed using t-test. Pearson correlation
coefficient (r) analysis was used to compare TRAIP expression and gH2AX focus
formation in the nucleus of tumour cells. A two-sided P value of less than 0.05 is
considered to indicate a statistically significant result.
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