
INTRODUCTION

Leucine-rich repeat kinase 2 (LRRK2)  has been associated with 
an autosomal dominant, late-onset form of familial Parkinson’s 
disease (PD). The encoded protein, LRRK2, is about 280 kDa in 

size and contains several functional domains, including a serine/
threonine kinase domain [1]. Among the PD-related pathogenic 
mutations found throughout the entire LRRK2 gene [2], the 
G2019S mutation, which enhances kinase activity [3], has been 
found in both sporadic and familial PD [4, 5]. Many studies have 
sought to identify the kinase substrates of LRRK2 to improve our 
understanding of LRRK2-mediated PD pathogenesis, and LRRK2 
has been shown to govern various biological functions, including 
neurite outgrowth, cell migration, mRNA translation, protein 
synthesis, neurotransmitter release, and stem cell maintenance [6-
12]. 
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Mutation of leucine-rich repeat kinase 2 (LRRK2) causes an autosomal dominant and late-onset familial Parkinson’s disease (PD). 
Recently, we reported that LRRK2 directly binds to and phosphorylates the threonine 474 (T474)-containing Thr-X-Arg(Lys) (TXR) 
motif of focal adhesion kinase (FAK), thereby inhibiting the phosphorylation of FAK at tyrosine (Y) 397 residue (pY397-FAK), 
which is a marker of its activation. Mechanistically, however, it remained unclear how T474-FAK phosphorylation suppressed FAK 
activation. Here, we report that T474-FAK phosphorylation could inhibit FAK activation via at least two different mechanisms. 
First, T474 phosphorylation appears to induce a conformational change of FAK, enabling its N-terminal FERM domain to auto-
inhibit Y397 phosphorylation. This is supported by the observation that the levels of pY397-FAK were increased by deletion of the 
FERM domain and/or mutation of the FERM domain to prevent its interaction with the kinase domain of FAK. Second, pT474-
FAK appears to recruit SHP-2, which is a phosphatase responsible for dephosphorylating pY397-FAK. We found that mutation of 
T474 into glutamate (T474E-FAK) to mimic phosphorylation induced more strong interaction with SHP-2 than WT-FAK, and 
that pharmacological inhibition of SHP-2 with NSC-87877 rescued the level of pY397 in HEK293T cells. These results collectively 
show that LRRK2 suppresses FAK activation through diverse mechanisms that include the promotion of autoinhibition and/or the 
recruitment of phosphatases, such as SHP-2.
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Focal adhesion kinase (FAK) is a non-receptor kinase that 
controls the migration, proliferation, and survival of cells [13-
15]. It consists of an N-terminal FERM domain, a kinase domain, 
and a C-terminal focal adhesion-targeting (FAT) domain [16, 17]. 
During cell migration, FAK is activated and recruited to the focal 
adhesion sites where lamellipodia are produced; this activates 
downstream signaling molecules that regulate the reorganization 
of cytoskeletal proteins, including the polymerization of actin [15]. 
FAK can be activated in response to cell-migration-promoting 
stimuli, such as the interaction between the extracellular matrix 
(ECM) and integrin [18], the activation of growth factor receptors 
or G protein-coupled receptors [19], and mechanical stress [20]. 
Upon activation of FAK demonstrated by autophosphorylation of 
Y397 (pY397), downstream signaling is activated for proper cell 
migration [15, 21]. 

We recently showed that G2019S-LRRK2 strongly inhibits 
FAK and attenuates microglial motility [9]. Our results revealed 
that microglia derived from G2019S-LRRK2 transgenic mice 
(TG-microglia) exhibited impaired FAK activation (decreased 
levels of pY397) when treated with ADP, which is a microglial 
activator that increases motility. TG-microglia produced unstable 
lamellipodia and exhibited reduce motility compared with wild-
type (WT)-microglia. Moreover, we found that LRRK2 suppresses 
FAK activation by directly phosphorylating the Thr residue(s) in 
the Thr-X-Arg (TXR) motif(s) of FAK, which include Thr 474 
(T474). In the present study, we further examined how T474-FAK 
phosphorylation prevents the activation of FAK. Our novel results 
suggest that T474 phosphorylation may promote the FERM-
mediated autoinhibition of FAK and/or trigger the recruitment 
of SHP-2, which dephosphorylates pY397-FAK. Thus, LRRK2 
appears to regulate FAK activity through diverse mechanisms.

Materials and Methods

Cell culture

The HEK293T cell line was acquired from ATCC (Seoul, Korea), 
and maintained in DMEM supplemented with 10% (v/v) FBS and 
penicillin/streptomycin (50 U/mL). 

DNA constructs

FLAG-FAK was prepared by inserting the human FAK gene 
into the p3xFLAG-CMV-7.1 vector (Sigma, St Louis, MO, USA) 
using AccuPrime Pfx DNA Polymerase (Invitrogen, Carlsbad, CA, 
USA) and an infusion cloning kit (Clontech, Palo Alto, CA, USA). 
Mutations were introduced into FLAG-FAK using a QuikChange 
Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, 
Palo Alto, CA, USA). The FERM domain deletion mutant 
(Δ35~362) was prepared using AccuPrime Pfx DNA Polymerase. 
Plasmids encoding WT-SHP-2 were kindly provided by Prof. 
Young Ho Suh (Seoul National University College of Medicine, 
Seoul, Korea). The primers used for mutagenesis are listed in Table 
1.

Transfection

HEK293T cells were transfected with DNA plasmids using the 
jetPEI transfection reagent (Polyplus-Transfection, San Diego, CA, 
USA) as described by the manufacturer. Briefly, cells were exposed 
to DNA plasmids and the jetPEI mixture for 4 hours, and then the 
media were replaced with fresh DMEM containing 10% FBS. Two 
days later, transfected cells were used for experiments.

Western blot analysis

Cells were lysed on ice in RIPA buffer (50 mM Tris-HCl pH 7.4, 
1% NP-40, 1 mM NaF, 0.25% Na-deoxycholate, 1 mM Na3VO4, 
and 150 mM NaCl) containing a protease/phosphatase inhibitor 

Table 1. Sequences of the primers used for mutagenesis of FAK and SHP2

Mutation Primer sequence(s)

FAK
   T474A
   T219E
   T227E
   T284E
   T455E
   T474E
   T979E
   Y180A/M183A
   V196D/L197D
   F596D
   FERM domain deletion (∆35~362)

 
5’-CTTCAAGAAGCCTTAGCGATGCGTCAGTTTGACCATCCTC-3’
5’-GGATTCTGTCAAGGCCAAAGAGCTAAGAAAACTGATCC-3’
5’-CTAAGAAAACTGATCCAACAAGAGTTTAGACAATTTGCCAACC-3’
5’-AATCAGTTACCTAGAGGACAAGGGCTGCAATCCC-3’
5’-CGGTTGCAATTAAAGAGTGTAAAAACTGTACTTCGGACAGCG-3’
5’-CTTCAAGAAGCCTTAGAGATGCGTCAGTTTGACCATCCTC-3’
5’-TACCAGCCAGCGAGCACCGAGAGATTGAGATGGC-3’
5’-CGGCGATCAGCCTGGGAGGCGCGGGGCAATGC-3’
5’-GAAAAGAAGTCTAACTATGAAGATGATGAAAAAGATGTTGGT TTAAAGCG-3’
5’- TGGCTCCAGAGTCAATCAATGATCGACGTT TTACCTCAGC-3’
5’-CTCCATTGCACCAGGAGAACGTTCC-3’ and 5’-CAGAAAGAAGGTGAACGGGCTTTGCC-3'
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cocktail (GenDEPOT, Barker, TX, USA). Lysates were centrifuged, 
and the proteins in the supernatant were resolved by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and blotted to nitrocellulose membranes (Protran; Schleicher 
& Schuell, Dassel, Germany). Membranes were incubated with 
antibodies specific for FAK (1:1000, Santa Cruz, Dallas, TX, USA), 
pY397-FAK (1:1000, Cell Signaling Technology, Danvers, MA, 
USA), FLAG (1:2000, Sigma), SHP1 (1:1000, BD Bioscience, NJ, 
USA), SHP2 (1:1000, BD Bioscience), PTPD1 (1:1000, Thermo 
Scientific), and PTP-PEST (1:1000, Cell Signaling Technology). 
The membranes were washed with Tris-buffered saline 
containing 0.1% Tween 20 (TBST) and incubated with secondary 
antibodies, and the results were visualized using an enhanced 
chemiluminescence system (Daeil Lab Inc., Seoul, Korea).

Immunoprecipitation assay

WT- and T474E-FAK-encoding constructs were transfected 
to HEK293T cells. After 2 days, the cells were lysed with an 
immunoprecipitation buffer (1% Triton X-100, 150 mM NaCl, 
10 mM NaH2PO4, 15 mM Na2HPO4, 50 mM NaF, 1 mM EDTA, 
and 1 mM Na3VO4). Cell lysates (500 μg) were incubated with 
primary antibodies against FLAG (1 μg, F1804; Sigma) and then 
with Protein G agarose beads (20 μl per reaction; Millipore, 
Billerica, MA, USA). The protein-antibody-bead complexes were 
treated with 100 μM FLAG peptide (Sigma) in 50 mM Tris-HCl 
pH 7.4 to release FLAG-FAK proteins from the agarose beads. 
The antibody-protein G agarose complexes were removed by 
centrifugation, and equal volumes of supernatants were subjected 
to Western blotting. 

In vitro kinase assay

FLAG-tagged WT and mutant FAK proteins were expressed 
in HEK293T cells, immunoprecipitated, and isolated from 
the agarose beads as described above. The released FLAG-
FAK proteins were incubated in kinase buffer S (50 mM Tris-
HCl, pH 8.5, 10 mM MgCl2, 0.01% Brij-35, and 1 mM EGTA; 
Invitrogen) containing a protease/phosphatase inhibitor cocktail 
(GenDEPOT) and 10 μM ATP and/or 1 μCi/mL 32P-ATP (Perkin 
Elmer-Cetus, Norwalk, CT, USA). 

Quantification and statistical analysis

The band intensities of the Western blots and Coomassie blue-
stained gels were quantified using the Image J software (NIH, 
Bethesda, MD, USA). The statistical significance of differences was 
determined by one-way analysis of variance (ANOVA) followed 
by the Newman-Keuls post hoc test, as applied using the Graph 
Pad Prism 5 software package (GraphPad Software, San Diego, 

CA, USA).

Results

Phosphorylation of T474-FAK decreases pY397 levels 

through FERM-mediated autoinhibition

We previously reported that FAK has six TXR consensus motifs 
that may be phosphorylated by LRRK2, and that the among 
phosphorylation-mimicking mutation of Thr (T) to Glu (E) 
(T→E), only T474 mutation attenuated the levels of pY397 in 
HEK293T cells [9]. Since the activation of FAK in these cells could 
be controlled by diverse mechanisms, we used in vitro kinase 
assays to examine the autophosphorylation capacities of FLAG-
tagged proteins representing WT FAK (FLAG-FAK) and six 
(T→E)XR mutants. These proteins, WT and mutant FAKs, were 
immunoprecipitated from overexpressing HEK293T cells, and 
phosphorylation levels were compared by autoradiography. Our 
results showed that T474E-FAK exhibited far less phosphorylation 
compared with WT-FAK and the other (T→E)XR-mutant FAKs 
(Fig. 1), suggesting that T474 phosphorylation directly suppresses 
the endogenous kinase activity of FAK. 

Next, we sought to determine how the phosphorylation of T474 
suppresses FAK activity. A previous study showed that the FERM 
domain of FAK physically covers Y397, thereby blocking its 
autophosphorylation [22]. Conversely, point mutations of V180A/
M183A, V196D/L197D, and/or F596D were shown to prevent the 

Fig. 1. Phosphorylation of T474-FAK suppresses FAK autophos
phorylation. In vitro kinase assays were performed using FLAG-tagged 
WT or mutant proteins of which indicated threonine (T) residue 
were mutated to glutamate (E), (T→E), and [32P]-ATP. FLAG-WT 
FAK (FLAG-FAK) or six FLAG-tagged mutants (T219, T227, T284, 
T455, T474, or T979→E) were overexpressed in HEK293T cells and 
collected by immunoprecipitation, and 32P-labeled FAK was detected by 
autoradiography. Coomassie blue staining shows the amounts of proteins 
in each reaction mixture.
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interaction between the FERM and kinase domains and increase 
Y397 autophosphorylation [23]. Here, we analyzed whether T474 
phosphorylation decreased FAK activity through the FERM 
domain. Interestingly, all three point mutations, V180A/M183A, 
V196D/L197D, and F596D, rescued Y397 phosphorylation in 
T474E-FAK-overexpressing HEK293 T cells (Fig. 2). Furthermore, 
deletion of the FERM domain (ΔFERM) increased the pY397 
levels for both WT-FAK and T474E-FAK (Fig. 2). These findings 
suggest that T474 phosphorylation induces FERM-mediated 
autoinhibition, thereby decreasing FAK activity. 

T474 phosphorylation recruits SHP-2 to decrease FAK activity 

FAK activity is known to be regulated by phosphatases that 
dephosphorylate pY397, such as protein tyrosine phosphatase 

(PTP)-PEST [24, 25], PTPD1 [26], SHP-1 [27], and SHP-2 
[28, 29]. Accordingly, we treated T474E-FAK-overexpressing 
HEK293T cells with the broad-spectrum tyrosine phosphatase 
inhibitor, pervanadate [30], and examined whether phosphatases 
are involved in the T474-phosphorylation-induced decrease in 
pY397-FAK. Interestingly, we found that the level of pY397-FAK 
was rescued by pervanadate treatment (Fig. 3A). Previously, we 
reported that overexpression of G2019S-LRRK2 in HEK293T 
cells weakly increased pY397-FAK levels in response to ADP 
compared with overexpression of WT- or D1994A (a kinase dead 
mutant)-LRRK2 [9]. Here, we found that pervanadate rescued 
pY397-FAK levels in G2019S-LRRK2-overexpressing cells (Fig. 
3B). These results suggest that tyrosine phosphatases contribute to 
the decreases in pY397 levels induced by T474 phosphorylation 

Fig. 3. The phosphatase inhibitor, pervanadate, rescues the level of pY397 in cells overexpressing T474E-FAK or G2019S-LRRK2. (A) T474E-FAK-
overexpressing HEK293T cells were treated with indicated amounts of pervanadate (PV) for 1 h. (B) G2019S-LRRK2-overexpressing HEK293T cells 
were treated with100 μM ADP in the presence of PV. Western blot analysis was carried out using pY397-FAK-specific antibodies. FLAG and FAK were 
detected as loading controls.

Fig. 2. T474 phosphorylation promotes FERM-mediated autoinhibition of FAK. FLAG-tagged FAK proteins (FLAG-FAK) harboring deletion of the 
FERM-domain (∆FERM) or the mutations, Y180A/M183A (YA/MA), V196D/L197D (VD/LD), or F596D (FD) were expressed in HEK293T cells, 
and the levels of pY397 were assessed by Western blot analysis using pY397-FAK-specific antibodies. The total levels of overexpressed FLAG-FAK were 
determined using FLAG antibodies (left panel). The band intensities of pY397-FAK were quantified, normalized to that of FLAG, and plotted (right 
panel). Values shown represent the means+SEM of three separate experiments. *p<0.05; **p<0.01.
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mimicked by overexpression of T474E-FAK or G2019S-LRRK2. 
Next, we examined which tyrosine phosphatase(s) is/

are responsible for dephosphorylating pY397-FAK. Our 
immunoprecipitation experiments revealed that T474E-FAK 
associated more strongly with SHP-2 than did WT-FAK (Fig. 4A). 
In contrast, PTPD1 and PTP-PEST both failed to bind WT- or 
T474E-FAK, while SHP-1 appeared to bind WT- and T474E-FAK 
with similar intensities (Fig. 4A). Our subsequent experiments 
revealed that the SHP-1/2 inhibitor, NSC-87877 (NSC), increased 
the level of pY397 in T474E-FAK-overexpressing HEK293T cells 
(Fig. 4B). 

Taken together, our present findings suggest that the LRRK2-
mediated phosphorylation of FAK at T474 suppresses FAK 
activity by inducing its autoinhibition and/or recruiting SHP-2 to 
dephosphorylate pY397.

Discussion

FAK, which is known to regulate diverse and fundamental 
biological phenomena (e.g., cell survival, proliferation, and 
migration), is highly expressed in the brain, neurons, and glial 
cells, such as microglia and astrocytes [9, 31, 32]. Previous studies 
showed that conditional knock-out of FAK in neurons during 
postnatal brain development increased the number of axon 
terminals and synapses by increasing branch formation [33], while 
that in cultured hippocampal neurons triggered defects in spine 
formation [34]. FAK has been shown to mediate neurotrophin-
induced neurite outgrowth in hippocampal neurons, and is known 

to regulate miniature excitatory postsynaptic currents (mEPSCs), 
long-term potentiation (LTP), and hippocampus-mediated 
spatial learning and memory [35]. In addition, FAK regulates the 
myelination of oligodendrocytes: conditional deletion of FAK 
in oligodendrocytes decreased the presence of myelinated fibers 
during development, but myelination became normal after birth, 
suggesting that FAK is involved in the initiation of myelination 
[36]. FAK inhibitors reportedly cause defects in microglial motility 
[9], which is important for the ability of these cells to scan the brain 
environment [37-40]. The PD-associated pathogenic LRRK2-
G2019S mutant may affect neurons and non-neuronal cells in 
many ways through FAK. We previously showed that G2019S-
LRRK2 directly phosphorylates FAK and decreases microglial 
motility [9], and other groups have reported that G2019S-LRRK2 
suppresses neurite outgrowth by regulating ezrin/radixin/moesin 
(ERM) [6, 41], Rac1 [42], Rab5 [43], and actin-related molecules 
[7]. FAK functions as a platform for downstream cascades that 
regulate actin/microtubule polymerization/depolymerization 
[15]. FAK also mediates the translocation of Rac1 to adhesion 
sites to promote lamellipodia extension and cell spreading [44], 
and interacts with actin-related protein complex (Arp2/3) to 
induce actin nucleation as an initial step for actin polymerization. 
Therefore, it has been suggested that G2019S-LRRK2 affects the 
functions and/or properties of neurons or non-neuronal cells by 
regulating FAK.

The activity of  FAK is regulated by its phosphorylation 
state. In response to stimuli that induce cell motility, FAK 
undergoes autophosphorylation at Y397, which triggers its Src-

Fig. 4. T474 phosphorylation recruits the FAK phosphatase, SHP2. (A) FLAG-WT-FAK or T474E-FAK were overexpressed and immunoprecipitated 
using FLAG antibodies. The levels of SHP1, SHP2, PTPD1, and PTP-PEST bound to WT- or T474E-FAK were analyzed using antibodies specific for 
each protein. (B) Cells transfected with FLAG-WT-FAK or FLAG-T474E-FAK were treated with NSC-87877, an inhibitor of SHP2, and the levels of 
pY397 were determined by Western blot analysis.
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mediated phosphorylation at Y576/577, Y861, Y863, and Y925 
[45-48]. Previous studies have shown that: FAK Y576/Y577 
phosphorylation is associated with maximum FAK activity 
[46]; the VEGF-mediated phosphorylation of Y861 promotes 
the formation of the FAK-integrin αvβ5 complex and facilitates 
migration in endothelial cells [49, 50]; Y861 phosphorylation 
enhances FAK Y397 autophosphorylation [45]; Y925 positively 
regulates lamellipodia formation and cell migration by promoting 
focal adhesion disassembly [47]; and the Cdk5-mediated 
phosphorylation of S732 is necessary for neuronal migration 
[51]. We previously added to this body of knowledge by showing 
that the LRRK2-mediated phosphorylation of T474 negatively 
regulates FAK activity by reducing Y397 phosphorylation [9]. 
Since LRRK2 is a Ser/Thr kinase, we speculated that one or more 
complicated mechanism(s) could be involved in the LRRK2-
mediated inhibition of FAK Y397 phosphorylation. Here, we 
report for the first time that FERM domain point mutations 
and deletions previously shown to uncover the kinase domain 
[23] could rescue Y397 phosphorylation in T474E-FAK-
overexpressing cells. Furthermore, the pY397 level of T474E-FAK 
was significantly reduced by SHP-2. Collectively, these results 
suggest a new mechanism for the regulation of FAK activation, 
wherein FAK T474 phosphorylation inhibits the phosphorylation 
of Y397 through FERM-mediated autoinhibition and/or SHP-2-
mediated Y397 dephosphorylation.
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