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INTRODUCTION

Asthma is a chronic inflammation characterized by airway 
hyperresponsiveness, airway narrowing, mucus overproduc-
tion, and airway remodeling. Airway inflammation via secre-
tion of pro-inflammatory cytokines is essential for asthma de-
velopment. These cytokines orchestrate allergic immune re-
sponses including T cell differentiation, IgE production, and 
leukocyte activation.1,2 Traditionally, allergic inflammation has 
been considered the result of environmental allergens such as 
dust mites, pollens, and animal dander. However, recent stud-
ies propose that bacteria-derived toxins or components can 
also be involved in allergic responses. Little is known about the 
mechanism by which environmental microbiota might con-
tribute to allergic reactions.

A recent metagenomic data analysis revealed a microbiome 
in the respiratory tract, which was once believed to be sterile, 
mainly because of difficulties in culturing of the bacteria.3 Yet 
the airway is external to the body, and this space is thus a pri-
mary site for exposure to environmental factors such as bacte-
ria and viruses. Differing compositions of lung microbiota be-
tween asthmatic and healthy people imply that bacteria might 
contribute to the development of disease.4,5 It is suggested that 
the local microbiota can directly affect airway-resident cells. 
However, the microbiota residing at other sites such as the gut 

might also affect lung immune responses. Further studies 
might elucidate interactions between the microbiota and the 
immune system that contribute to asthma.

An effective immune response requires appropriate cytokines 
and other inflammatory mediators produced by infected or res-
ident cells. Microbiota- and host-derived molecules such as ex-
tracellular vesicles (EVs) might also regulate inflammation. EVs 
are lipid bilayers containing transmembrane proteins, cytosolic 
proteins, lipids, and nucleic acids with a diverse range of sizes 
(100-1,000 nm in diameter). As these molecules have surface li-
gands that interact with receptors on target cells, they can at-
tach and modify the physiological state of recipient cells.6,7 Re-
cent studies have demonstrated that EVs are involved in devel-
opment of cancer, atherosclerosis, diabetes, meningitis, and 
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salpingitis. 
This review focuses on the potential relationship between en-

vironmental microbiota and asthma. We are of the view that 
asthma is not simply induced by allergens. We also propose 
that EVs are key molecules that link the microbiota to asthma 
by regulating immune responses. 

Microbiota and immune responses of asthma
Asthma is a worldwide disease commonly characterized by 

eosinophilic inflammation. Given the large number of eosino-
phils in the airways, asthma is considered a hallmark of T help-
er type 2 (Th2) disorders of the lungs. The Th2 response is gen-
erally driven by the cytokines IL-4, IL-5, IL-9, and IL-13, which 
promote increased numbers of eosinophils in the airway and 
lead to high IgE levels in the blood. In mice, depletion of Th2-
associated cytokines or induction of the Th1 response has re-
duced asthma features.8,9 However, there is an increasing inter-
est in understanding the non-Th2 response, which likely repre-
sents a large proportion of asthma cases.

The non-Th2 response involves adult-onset and severe asth-
ma, which have a mixed Th1 and Th17 response with neutro-
philic inflammation.10,11 In mice models of asthma, IL-17 has 
been strongly linked to neutrophilic inflammation, and has led 
to corticosteroid resistance.12,13 Severe asthma driven by IL-17 
pathologically correlated with steroid-resistant asthma. Neu-
trophilic asthma has been linked to upregulation in TNF-α 
pathways, but it remains uncertain whether TNF blockade 
could improve steroid responsiveness.14,15 Although 2 forms of 
asthma have been defined, Th2 and non-Th2 responses co-oc-
cur in many cases, rather than being mutually exclusive.

Similar to many chronic inflammatory diseases, the patho-
genesis of asthma mainly depends on genetic susceptibility and 
environmental factors.16-18 Environmental changes are a major 
factor in the development of allergic diseases. The recent mi-
crobiota hypothesis has suggested that perturbations in the gut 
microbiota disrupt the mucosal tolerance.19,20 A balance be-
tween the microbiota and host that maintains functional ho-
meostasis is accurately regulated; however, it is constantly chal-
lenged by several factors. Once pathogenic bacteria colonize a 
niche, they cause a state of dysbiosis in the microbial commu-
nity, which is now recognized to induce allergic diseases such 
as asthma (Table).

Airway microbiota and asthma
The presence of certain bacteria in the airway can regulate al-

lergic inflammation.21 Haemophilus influenzae might be related 
to neutrophilic asthma, in which inflammation is mainly in-
duced by neutrophils.22 Another well-known pathogenic bacte-
rium, Staphylococcus aureus, is thought to be involved in severe 
asthma, since asthmatic patients have presented high levels of 
specific antibodies against S. aureus enterotoxins.23,24 Other 
bacteria such as Moraxella catarrhalis and Streptococcus pneu-

moniae have also been associated with childhood asthma.25 
However, not all bacteria in the airway aggravate the severity of 
asthma; for example, Lactobacillus rhamnosus has protective 
effects against respiratory infection.26 Specific bacteria seem to 
modulate allergic inflammation; however, whether a single 
bacterial species can induce allergic disease is still unclear.

Recent studies have revealed that the composition of the mi-
crobiota residing in the lung can be more important in allergic 
diseases than the simple presence of individual species. Analy-
ses of 16S rRNA have found that the airway hosts a complex 
community of microbes; moreover, bacterial populations of 
asthmatic patients are unlike those of healthy control sub-
jects.27,28 The bacterial compositions of bronchial samples have 
also exhibited differences between 2 groups.29,30 These reports 
indicate that the phylum Proteobacteria was relatively prevalent 
in asthmatics, while phylum Bacteroidetes predominated in 
healthy controls. It has become clear that microbial community 
dysbiosis correlates with asthma.31,32 Diverse bacterial commu-
nities reside in the airway, and altered composition of these mi-
crobiota might contribute to allergic inflammation in asthma.

Clinical studies of corticosteroid inhalation suggest that the 
airway microbiota affects corticosteroid responsiveness among 
asthmatic patients.33 Bacterial community profiles of corticoste-
roid-sensitive or -resistant asthmatics were not well discerned, 
but Haemophilus parainfluenzae was observed in some of the 
corticosteroid-resistant asthmatics. Another study of antibiotic 
treatment observed azithromycin-induced modification of the 
airway microbiota of adult asthmatic patients.34 The abundance 
of members of the Haemophilus and Pseudomonas genera de-

Table. Pathogenic and beneficial bacteria associated with allergic inflamma-
tion

Pathogenic bacteria Related disease References

Escherichia coli Neutrophilic inflammation 66
Haemophilus influenzae Neutrophilic asthma 22

Haemophilus parainfluenzae Corticosteroid-resistant  
asthma

33

Moraxella catarrhalis Child asthma 25

Pseudomonas aeruginosa Pulmonary inflammation 67

Dermatitis-like skin  
inflammation

63, 64

Staphylococcus aureus Neutrophilic pulmonary  
inflammation

65

Severe asthma 23, 24
Streptococcus pneumoniase Child asthma 25

Beneficial bacteria Function References

Clostridium spp. Induction of regulatory T cells 47
Lactobacillus rhamnosus Protect against respiratory  

infection
26

Lactobacillus reuteri Induction of regulatory T cells 46
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clined within the community, but the abundance of Anaerococ-
cus species increased. These findings suggest that the airway 
microbiota drives asthma development, and explain corticoste-
roid responsiveness. We expect that current efforts to under-
stand the airway microbiome membership in detail will help 
reveal a mechanistic link between the microbiota and asthma.

Gut microbiota and asthma
The airway microbiota can shape lung-specific immune re-

sponses resulting in either homeostatic or detrimental inflam-
mation. Recently, the gastrointestinal (GI) tract microbiome 
has also become a plausible influencer of immune develop-
ment against allergy or asthma. This interest in GI microbes 
stemmed from an observed inverse relationship between rate 
of childhood asthma and exposure to bacteria in infancy.35-38 
Moreover, infants who develop asthma have presented relative-
ly few lactobacillus, and bifidobacteria, and relatively many en-
terococcus.39-41 Further studies indicate that the gut microbiota 
influences the maturation of immune function in early life 
through the oral ingestion of environmental bacteria.42-44

Studies in mice also provide strong evidence of the role of gut 
microbiota in the regulation of immune function. Germ-free 
(GF) mice presented strong allergic inflammation compared to 
specific pathogen-free (SPF) mice through OVA sensitization 
and challenge.45 Specific bacteria like Lactobacillus reuteri ex-
hibited the protective effects of inducing regulatory T (Treg) cell 
expansion and reducing inflammation, in response to OVA 
challenge in sensitized BALB/c mice.46 Treatment with Clostrid-
ium strains produced similar effects on Treg cells in the colonic 
mucosa, and reduced IgE levels after OVA sensitization.47 Inter-
estingly, segmented filamentous bacteria induced Th17 cell ex-
pansion, which mediates mucosal defense in the lamina pro-
pria.48 However, a recent study found that direct ingestion of 
certain bacteria was insufficient to induce significant changes 
in immune function.

Experimental feeding of different dietary components indi-
cated that dietary changes could affect allergic inflammation by 
modifying the microbiota composition. High fiber diet altered 
the ratio of Firmicutes spp. to Bacteroidetes spp., and increased 
the levels of circulating short-chain fatty acids. These subse-
quent alterations protected against allergic lung inflammation 
via activation of Treg cells.49,50 The mechanisms of Treg-medi-
ated suppression are not fully understood, but microbes do 
promote Treg cell activation by maintaining resident dendritic 
cells (DCs) in an immature state, which is essential for mucosal 
tolerance.51,52

The propensity of an innocuous antigen to induce local and 
systemic immune unresponsiveness is termed as oral toler-
ance.53 In the large intestine, commensal bacteria are also regu-
lated by an analogous, but more locally processed, tolerance. It is 
assumed that oral tolerance and airway tolerance are tightly 
linked, and that the GI tract might act as a sensor for the develop-

ment of tolerance to antigens. However, it remains to be deter-
mined how changes in the gut microbiota affect lung immunity.

EVs as mediators of allergic disease
Immune system recognition of pathogens is essential to acti-

vating immune cells. Bacterial components that trigger im-
mune response are often referred to as pathogen-associated 
molecular patterns (PAMPs); these components include carbo-
hydrates, lipids, proteins, and genetic material. PAMPs can bind 
to pattern recognition receptors (PRRs) on immune and non-
immune cells, thereby initiating signaling cascades. Given their 
role in the immune system, pathogens have evolved to increase 
their virulence by modulating their signals to PRRs.54 Recent 
studies report that both PAMPs and EVs released from infected 
cells and pathogens are likely to be involved in immune re-
sponses.55

EVs are released by diverse cell types that have been implicat-
ed in allergic responses such as bronchial epithelial cells, mast 
cells, dendritic cells, and T cells in the lung.56 Bronchial epithe-
lial cells are the primary producers of EVs in the lungs of pa-
tients with asthma.57 Interestingly, it was found that IL-13-stim-
ulated bronchial epithelial cells released EVs that promoted 
proliferation of macrophages, but reduction in EV secretion 
seemed to ameliorate asthmatic features. During allergic in-
flammation, mast cell-derived EVs were highly activated, and 
contributed to induction of DC maturation.58 DCs also produce 
EVs that present allergens and activate allergen-specific Th2 
cells.59 Many studies suggest that EVs can transfer MHC/anti-
gen complexes, enabling the DCs to efficiently activate T 
cells.60,61 These observations indicate the potential contribu-
tions of diversely sourced EVs to the pathogenesis of asthma. In 
contrast, some studies have reported that EVs can inhibit Th2 
response-associated cytokine production, IgE response, and 
even prevent the development of asthma.62 While immune cells 
mediate immune responses, non-immune cells such as bacte-
ria also have important roles in activating immune responses. 
EVs produced by pathogens such as Staphylococcus aureus 
have been implicated in atopic dermatitis-like skin inflamma-
tion;63,64 these EVs might also induce neutrophilic pulmonary 
inflammation.65 EVs derived from E. coli induce several infec-
tious diseases, and can aggravate emphysema through IL-17A-
mediated neutrophilic inflammation.66 Pseudomonas aerugino-
sa often contributes to lung diseases such as cystic fibrosis, and 
its EVs increase pulmonary inflammation through Toll-like re-
ceptor (TLR)2 and TLR4 pathways.67 Moreover, indoor dust, 
which contains many components of bacteria, has been associ-
ated with both Th1 and Th17 responses, which induce neutro-
philic pulmonary inflammation.68,69 As bacteria-derived EVs 
can affect distal host cell sites,70 these vesicles might play signif-
icant roles throughout the body. Here, we propose a model that 
uses EVs to link the environmental microbiota with airway im-
munity (Figure).
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CONCLUSIONS

The presence of lung and gut dysbiosis in asthma suggests 
that microbiota composition might shape the immune system 
and lead to the development of asthma. Microbial communi-
ties have immunomodulatory roles in both the disease progres-
sion and the clinical outcome of asthma, but our understand-
ing of mechanisms linking gut- to lung-immunity is still un-
clear. EVs might provide new insights into immune responses, 
as they can move to distant sites and stimulate other cells such 
as immune and epithelial cells. EVs produced by commensal 
bacteria can benefit the host by promoting mucosal tolerance 
and protecting against the onset of diseases. However, ques-
tions remain as to which components of EVs activate recipient 
cells and how EVs regulate intracellular signaling pathways. 
Further studies will provide a mechanistic understanding of in-
teractions between the microbiota and the host immune re-
sponse through EVs, which in turn will aid in providing new in-

sights into the management of asthma. 
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