
INTRODUCTION

Parkinson’s disease (PD) is the second most common neurode-
generative disease. Its symptoms are related to the death of dopa-
minergic neurons in the substantia nigra pars compacta. Although 
most cases of PD are sporadic, researchers have devoted significant 
effort to studying the function of PD-associated genes in the hope 
of gaining insight into the pathophysiology of this disease. 

Approximately 20 PD genes have been identified to date, and 
their roles have been studied [1-4]. However, animal models carry-
ing mutations of these genes largely fail to spontaneously develop 
PD phenotypes with the exception of some alpha-synuclein mu-

tant-carrying animals [5] although brain injury induced by isch-
emia and/or toxin treatment is potentiated [3, 6-8]. Since neuronal 
death process itself is rather rapid, it is difficult to see how neu-
ronal defects and/or vulnerability could fully explain the gradual 
neurodegeneration of PD. It seems more likely that dysfunctions 
of astrocytes and microglia make the brain microenvironment 
slowly deteriorate, and that neurons die when the environment be-
comes too poor for their survival. PD genes are usually expressed 
in astrocytes and microglia [9-19]. Therefore, astrocytes and mi-
croglia that carry PD gene mutations and express these genes may 
not properly cope with injury. Indeed, it has been reported that 
astrocytes may not properly exert their beneficial roles in PD and 
Parkinsonian syndromes [20, 21].

In this review, we summarize the diverse roles of astrocytes and 
microglia in intact and injured brain (e.g., maintenance of brain 
homeostasis, survival of neurons, neurotransmission, injury repair, 
etc.). In addition, we discuss how mutation of PD genes alters the 
functions of astrocytes and microglia, and how these alterations 
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may be linked to neurodegeneration in PD.

ROLES OF ASTROCYTES IN INTACT AND INJURED BRAIN

Roles of astrocytes in intact brain

Astrocytes are the most abundant cells in the brain. Astrocytes 
maintain the homeostasis of the brain microenvironment through 
uptake of glutamate and potassium ions via the excitatory amino 
acid transporter, (EAAT)-1/2, and the inward-rectifier potassium 
channel, Kir4.1, respectively [22-24]. They also regulate the ex-
tracellular water content through aquaporin-4 (AQP4) [24], and 
modulate oxidative stress by producing glutathione (GSH) [25, 
26]. 

Astrocytes are the main cells responsible for regulating glucose 
metabolism in the brain. They take up glucose from blood and use 
glycolysis to supply energy to neurons in the form of lactate [26]. 
Through the pentose phosphate pathway (PPP), astrocytes pro-
duce NADPH and nucleic acids/amino acids, which contribute to 
regulating the redox states of the brain environment and prolifera-
tion, respectively [27]. Astrocytes also store glucose as glycogen [28, 
29]. In addition, they also provide neurons with glutamine, which 
is converted from glutamate by the action of glutamine synthetase 
[30, 31]. The neurons then convert glutamine into glutamate for 
neurotransmission [31]. 

The more we study astrocytes, the more new functions are 
revealed for these cells. Astrocytes actively communicate with 
neurons, microglia, and other astrocytes [32-35]. Astrocytes re-
lease gliotransmitters including γ-aminobutyric acid (GABA) and 
glutamate [34, 35]. In addition, astrocytes express several types 
of neurotransmitter receptors and ion channels [33]. Astrocytes 
inhibit microglial activation in intact brain [32]. In addition, as-
trocytes regulate the formation of the blood brain barrier, modu-
late the tone of blood vessels [36-38], and provide neurons with 
important growth factors [39]. Astrocytes also regulate formation 
and/or phagocytosis of synapses [40, 41]. Recently, it has been 
suggested that astrocytes are important for the ability of the glym-
phatic system to eliminate waste in the brain [42]. Thus, it is easy 
to see astrocytes as being critical for brain functions, and to under-
stand that a loss of their function may be directly linked to brain 
diseases. 

Roles of astrocytes in injured brain

Astrocytes play critical roles in neuroprotection and regeneration 
of the injured brain. In response to brain injury, astrocytes become 
activated; this is termed astrogliosis, or the cells are called ‘reactive 
astrocytes’. Reactive astrocytes become hypertrophic and increase 
expression of Kir4.1, and GLAST, which assists in the removal of 

the elevated extracellular glutamate and K+ released from dam-
aged cells [43]. Astrocytes also rapidly respond to reactive oxygen 
species (ROS) [44], act to protect neurons from oxidative stress [25, 
26], and inhibit excessive inflammation by regulating microglial 
activation [32, 45, 46]. Previously, we and others have reported that 
activated astrocytes are critical for the protection of neurons and 
other brain cells in injured brain. For example, in NMDA-injected 
brain, healthy neurons are observed in the penumbra region near 
activated astrocytes whereas in kainic acid-injected brain, both as-
trocytes and neurons gradually die off [43]. Similar to the NMDA 
example, ATP-injected brain exhibits acute neuronal death, but no 
further neuronal death in the penumbra region where astrocytes 
are activated [47]. In contusion-induced spinal cord injury, astro-
cyte death precedes neuronal death, and neuronal death is spatially 
and temporally correlated with the death of astrocytes [48]. Ac-
cordingly, in glial fibrillary acidic protein (GFAP) - and vimentin-
knockout (KO) mice, which do not exhibit astrogliosis, spinal cord 
injury induces more severe damage than that observed in wild-
type (WT) mice [49]. Similarly, selective ablation of reactive astro-
cytes exacerbates traumatic neuronal damage, and transplantation 
of astrocytes diminishes brain damage [50, 51]. Astroglial scar 
has been considered to be occurred in severely damaged brain, ir-
reversible, and inhibits regeneration of damaged neurites [52, 53]. 
However, a recent study showed that scar formation contributes to 
neuroprotection and does not inhibit regeneration [54]. Therefore, 
astrogliosis in injured brain is critical for neuronal survival.

Several studies have suggested that astrocytes produce pro-in-
flammatory mediators. However, we found that astrocytes express 
chemokines but barely express other proinflammatory mediators, 
if any, in injured brain at least in immunohistochemistry levels 
[46, 55-57]. In addition, in injured brain, neurons do not die in the 
region where astrocytes are activated, but rather die in absence of 
reactive astrocytes [43, 48, 58]. In addition, it has been suggested 
that astrocytes isolated from brains after ischemic injury and in-
traperitoneal LPS-injection may play beneficial (A2) and harmful 
roles (A1), respectively [59]. However, it’s not clear whether A1 
astrocytes play cytotoxic roles for neurons in injured brain since 
there is no direct evidence to show intraperitoneal LPS-injection 
induced neuronal death, and yet, neuronal death is due to A1 as-
trocytes. 

Astrocytes participate in repair of injured brain by proliferating 
and expressing growth factors and extracellular matrix proteins 
that support axonal growth [57, 60, 61]. In LPS-injured brain, areas 
lacking astrocytes decrease in size beginning about a week after 
LPS injection and almost completely disappear at about 3 months 
post-injection [57]. Myelin, neurites, blood vessels, etc., also reap-
pear and refill the injured area [57]. Studies have also shown that 
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astrocytes regulate revascularization and remyelination in injured 
brain [62, 63]. Consistent with this, intrathecal infusion of FGF-
2 or EGF, which increase number of astrocytes and ependymal 
cells, have been shown to improve functional recovery in spinal 
cord injury [64], whereas astrocyte depletion significantly increase 
leukocyte infiltration, blood brain barrier disruption, and dam-
age [49, 51]. GFAP-positive neural stem cells in the subventricular 
zone (SVZ) have also been shown to participate in repairing injury 
sites [65, 66]. Recent studies suggest that astrocytes play even more 
active roles in repairing injured brain, as reactive astrocytes in a 
damaged brain are shown to de-differentiate into stem-like cells 
and re-differentiate into neurons [67, 68]. In injured brain, there-
fore, it is critical to preserve astrocytes and/or support their func-
tions to prevent neuronal death and facilitate the regeneration of 
injured brain.

ROLES OF MICROGLIA IN INTACT AND INJURED BRAIN

Surveillance function of microglia

Microglia (i.e., brain macrophages) continuously extend and re-
tract their processes, and make contacts with synapses for pruning 
in developing and adult brain, by which microglia may fine tune 
neural circuits [69, 70]. Thus, disruptions in microglia-mediated 
synaptic pruning could develop neurodevelopmental, psychiatric, 
and neurodegenerative disorders [69, 71-73].

In response to brain injury, microglia rapidly extend their pro-
cesses toward lesion sites and isolate them [74, 75], which is critical 
to the prevention of further injury due to the disruption of micro-
environmental homeostasis [76]. Thus, treatment with an actin-
depolymerizing agent is associated with the failure of microglia 
to properly isolate injury sites, and the subsequent worsening of 
damage [76]. 

Inflammatory responses of microglia in injured brain

Microglia are activated and produce inflammatory mediators in 
injured brain. Microglia in intact brain have many processes, and 
those in injured brain have thicker processes. Blood cells that infil-
trate into damaged brain may be mistakenly identified as microglia 
because of absence of specific markers for each type of cells. Since 
CD11b is expressed in microglia and all kinds of white blood cells 
(e.g., monocytes, neutrophils, and lymphocytes), CD11b-positive 
and/or Iba-1-positive neutrophils and monocytes, which are 
round in shape, are often misinterpreted as activated microglia in 
injured brain [55, 56]. Unlike cultured microglia activated by LPS 
and/or interferon (IFN)-gamma that express cytotoxic inflam-
matory mediators such as iNOS [77], microglia in injured brain 
express limited amounts and/or kinds of non-toxic inflammatory 

mediators [55, 56]. Furthermore, neurons and neurites are healthy 
in injured brain regions that harbor activated microglia [48, 56], 
suggesting certain roles of inflammatory mediators in injured 
brain. In fact, cytokines (e.g., IL-1beta, IL-6, and TNF-alpha) have 
diverse functions including regulation of neurite outgrowth [78-
80], metabolism [81], growth factor expression [78, 82], and ion 
channel activity [83]. 

In response to injury, cytotoxic inflammatory mediators are 
produced to prevent infection although they exert toxic effects 
on surrounding tissues. However, brain injury including ischemic 
damage and traumatic injury do not open the brain to outside ex-
posure, which means the absence infection. Therefore, in injured 
brain, diverse mechanisms inhibit cytotoxic inflammation by 
producing negative regulators of inflammation including suppres-
sor of cytokine signaling (SOCS)-family proteins and antioxidant 
enzymes [46, 84-88]. In addition, astrocytes and neurons in intact 
and damaged states attenuate microglial inflammatory responses 
[32, 45, 89]. 

Together, the accumulating data indicate that astrocytes and 
microglia play diverse roles in protecting neurons and other brain 
cells in injured brain. Therefore, it seems reasonable to expect that 
insufficient and/or altered functions of astrocytes and microglia 
will decrease the protection of cells in injured brain. 

FUNCTIONS OF ASTROCYTES AND MICROGLIA ARE ALTERED 
BY MUTATIONS OF PARKINSON’S DISEASE (PD) GENES

Many studies on PD and other neurodegenerative diseases have 
focused on the death of defective neurons. However, neuronal 
death can also be induced by a brain environment that does not 
sufficiently support neuronal survival and/or function. Since PD 

Fig. 1. Functions of astrocytes and microglia regulated by PD genes.
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genes are expressed in astrocytes and microglia, we review how 
mutations in certain PD genes, affect the functions of astrocytes 
and microglia (Fig. 1). 

PD genes regulate glucose metabolism and mitochondrial 

function 

Mitochondrial dysfunction, a well-known risk factor for PD [90, 
91], increases ROS production and alters glucose metabolism [92, 
93]. Accordingly, changes in the metabolites and enzymes of the 
tricarboxylic acid (TCA) cycle are observed in PD brains [94, 95]. 
Positron emission tomography using 18F-deoxyglucose (18F-FDG 
PET) analysis also showed that glucose metabolism is reduced in 
various brain regions of PD patients [96]. In the brain, astrocytes 
metabolize glucose mainly through glycolysis, whereas neurons 
use oxidative metabolism for this purpose [26]. It has been report-
ed that lethality or deficient locomotion is seen in Drosophila in 
which glycolytic enzymes have been knocked down in glia but not 
in neurons, suggesting that glial glycolysis in the brain is important 
for survival and normal locomotor behavior [97]. 

Parkin, PINK1, DJ-1, and LRRK2 regulate mitochondrial func-
tion and glucose metabolism [98-100]. Expression of a kinase-
dead PINK1 mutant decreased ATP generation, decreased oxygen 
consumption, and increased ROS production [101]. Parkin may 
also regulate glycolysis since it directly regulates pyruvate kinase 
M2, a glycolysis rate-limiting enzyme [102]. In addition, LRRK2 
regulates vulnerability to mitochondrial dysfunction in c. elegans 
[100]. 

In astrocytes, these genes regulate mitochondrial function and 
glucose metabolism. PINK1-knockout (KO) astrocytes exhibit 
decreased mitochondrial mass, decreased membrane potential, 
decreased glucose uptake, and increased intracellular ROS levels 
[9]. DJ-1 plays a unique role in glucose metabolism: DJ-1, with 
its glyoxalase activity metabolizes a toxic product of glycolysis, 
methylglyoxal, into D-lactate [103]. Methylglyoxal, which is a cell-
permeant precursor of advanced glycation end products (AGEs), 
has been associated with diabetes, aging, and neurodegenerative 
diseases [104]. Astrocytes actively detoxify methylglyoxal via their 
glyoxalase [105]. DJ-1 deficiency decreases this metabolism, lead-
ing to accumulation of methylglyoxal in the brain [103]. 

Neuroprotective functions of PD genes

Astrocytes protect neurons in several ways, such as by scaveng-
ing ROS and expressing growth factors. GSH is a ROS scavenger 
produced from astrocytes [106]. Parkin regulates GSH levels in 
astrocytes. Accordingly, GSH levels are lower in Parkin-KO astro-
cytes than in WT astrocytes [19]. PINK1 and DJ-1 regulate nuclear 
translocation and/or stabilization of Nrf2 [107-109], a critical 

transcription factor for the expression of antioxidant enzymes 
such as NAD(P)H quinone oxidoreductase 1 and HO-1 [107-109], 
although their roles have been reported in cancer cells and SHSY5 
neuron cells [107-109]. In endothelial cells, DJ-1 directly functions 
as an antioxidant via the oxidation of its cysteine residue [110, 
111]. In astrocytes, DJ-1 deficiency reduces their ability to protect 
neurons against the mitochondrial toxin, rotenone [112-115]. In 
addition, DJ-1 increases mitochondrial antioxidant H2S produc-
tion in astrocytes through expression of cystathionine β-synthase 
(CBS), the major enzyme that catalyzes H2S production [116].

Growth factors released from astrocytes including glial-derived 
neurotrophic factor (GDNF), brain-derived neurotrophic factor 
(BDNF), etc., are important for the development and survival of 
neurons [117, 118]. Recently, we have reported that DJ-1 deficien-
cy reduces GDNF and BDNF expression in astrocytes [119]. Sev-
eral studies have reported that parkin and PINK1 are linked to the 
expression and/or functions of GDNF. Parkin prevents degenera-
tion of dopaminergic neurons in cooperation with GDNF [120]. 
GDNF and its signaling receptor, Ret, rescues PINK1 deficiency-
induced muscle degeneration, mitochondrial disintegration, and 
ATP content in Drosophila [121]. However, there is no direct 
evidence showing their roles for GDNF expression in astrocytes. 

PD genes regulate gliogenesis, astogliosis, and proliferation 

of astrocytes 

PINK1 expression has been shown to increase during brain 
development and the differentiation of neural stem cells [11]. In-
terestingly, PINK1 deficiency causes defects in GFAP expression 
during early brain development and decreases differentiation of 
neural stem cells (NSCs) into GFAP-positive astrocytes (astro-
genesis) [11]. Although astrogenesis is regulated by a number of 
signaling molecules (e.g., SMAD1/5/8, STAT3, and HES1), these 
signaling pathways appear normal in PINK1-deficient NSCs [11]. 
Various microRNAs (miRNAs; e.g., mir-326, -330, and -3099) 
increase during brain development and NSC differentiation, and 
thus appear to contribute to regulating GFAP expression [12]. No-
tably, PINK1 deficiency decreases the expression of these miRNAs 
during the above mentioned processes [12]. 

PINK1 deficiency also causes a defect in the proliferative re-
sponse of astrocytes to epidermal growth factor (EGF) and fetal 
bovine serum (FBS) [9]. This defect, which is associated with de-
layed wound healing in cultured astrocytes, appears to be caused 
by mitochondrial dysfunction through increased p38 MAPK 
(mitogen-activated protein kinase) activation, decreased AKT ac-
tivation, and decreased EGF receptor (EGFR) expression [9]. Par-
kin also regulates proliferation: glia cultured from parkin-KO mice 
show reduced proliferation, and increase proapoptotic protein 
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expression [19]. Astrocytes proliferate and participate in repairing 
the damage in injured brain [57, 122]. Our recent study shows that 
DJ-1 positively regulates astrogliosis in injured brain [119]. DJ-1 
regulates astrogliosis through stabilization of Sox9 [119], a tran-
scription factor that regulates gliogenesis during development of 
the brain [123, 124], and astogliosis in injured brain [125, 126]. Ac-
cordingly, DJ-1 deficiency causes defects in astrogliosis and delays 
repair of injured brain [119]. Therefore, defects in proliferation, as-
trogenesis, and/or astrogliosis due to mutation of PD-related genes 
may delay repair and contribute to the pathogenesis of PD. 

PD genes regulate phagocytosis and the functions of lipid 

rafts 

PINK1, α-synuclein, LRRK2, DJ-1, and parkin are all known to 
associate with lipid rafts, suggesting that dysfunction of these pro-
teins may cause defects in cellular functions related to lipid rafts 
[16, 17, 127]. DJ-1 regulates lipid raft-dependent endocytosis in 
astrocytes and MEFs [16, 17], and DJ-1 deficiency impairs uptake 
of glutamate into astrocytes by altering EAAT2 expression [17]. 
DJ-1 also positively regulates microglial phagocytosis of alpha-
synuclein [128]. 

Parkin, α-synuclein, and LRRK2 also regulate endocytosis and/or 
phagocytosis. Parkin deficiency promotes lipid raft-dependent en-
docytosis through the accumulation of caveolin-1 in MEFs [127]. 
In addition, aggregated α-synuclein inhibits microglial phagocy-
tosis by binding to FcγRIIB and activating the phosphatase, SHP-
1 [129, 130]. In addition, LRRK2 regulates microglial phagocytic 
activity in a kinase dependent manner [131, 132]. 

PD genes regulate inflammation and microglial surveil-

lance functions

Accumulating evidence shows that PD genes regulate brain in-
flammation. For example, DJ-1 attenuates inflammation by regu-
lating diverse signals, including p38 MAPK, STAT1, and ROS [16, 
133]. DJ-1 regulates intracellular ROS both by direct scavenging 
and by increasing the expression of antioxidant enzymes [108, 110, 
111]. DJ-1 inhibits STAT1 activation by facilitating the interaction 
between STAT1 and its phosphatase, Src-homology2-domain 
containing protein tyrosine phosphatase-1 (SHP1) [15]. DJ-1 also 
regulates STAT1 activation by upregulating the expression of mir-
155 [134], which specifically induces expression of suppressor of 
cytokine signaling 1 (SOCS1), a negative feedback regulator of 
STAT1 [134]. 

PINK1 also regulates inflammation. Brain slices of PINK1-
KO mice exhibit increased mRNA expression of inflammatory 
cytokines, compared to WT brain slices [14]. PINK1 deficiency 
reduces activation of STAT3 and AKT, which negatively regulate 

inflammatory responses [14]. However, others have reported that 
PINK1 enhances IL-1-beta-induced NF-kB activation in HEK293 
cells and mouse embryonic fibroblasts [135]. 

LRRK2 deficiency has been shown to inhibit inflammation by 
inhibiting p38 MAPK and decreasing the transcriptional activity 
of NF-kB [13, 136]. However, overexpression of LRRK2 WT and 
G2019S yields similar increases in NF-kB activity, suggesting that 
LRRK2 regulates NF-kB in a kinase-independent manner [13]. 
Alpha-synuclein also positively regulates microglia inflammatory 
responses and astrocyte ICAM-1 and IL-6 expression [137-139]. 
In addition, astrocytes that express A53T alpha-synuclein enhance 
microglial activation [7]. These information indicate that brain 
inflammation is enhanced by both loss-of-function mutations of 
DJ-1 and PINK1 and gain-of-function mutations of LRRK2 and 
alpha-synuclein.

Parkinson’s disease genes may regulate microglial surveillance 
function. LRRK2 interacts with several actin-regulating proteins 
and regulates actin dynamics [140-142]. Microglia continuous 
movement of their processes to survey microenvironments of the 
brain [74, 75], which is regulated by actin dynamics [76]. LRRK2-
knockdown BV2 microglia cells are morphologically different 
from WT microglia and are highly motile even in the absence of 
any stimulator [10, 143]. LRRK2 regulates microglial motility in a 
kinase-dependent manner through the inhibition of FAK, a criti-
cal player in cell movement [10, 144]. Furthermore, the LRRK2 
G2019S mutation retards the microglial response to injury [10]. 
Since defects in the ability of microglia to isolate injured brain sites 
has been shown to increase the damage [76], microglial defects 
caused by the G2019S mutation may contribute to the develop-
ment of PD. 

CONCLUSION

It has been reported that glial functions are decreased and altered 
with aging [145], which is the most important risk factor for PD 
and other neurodegenerative diseases. In this review, we sum-
marize the defects of glial functions associated with the mutation 
and/or deficiency of PD genes. The existing evidence shows that 
impaired glial function is closely related to onset and progres-
sion of PD. Therefore, defects in the functions of astrocytes and 
microglia increase the risk of PD. This suggests that studies on glia 
may facilitate the development of new therapeutic targets for treat-
ing PD and other neurodegenerative diseases.
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