
INTRODUCTION

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquiti-
nating enzyme that is highly expressed in neurons, comprising 
1~2% of total neuronal proteins [1]. Accumulating evidence indi-
cates that UCH-L1 may be involved in the pathogenesis of many 
neurodegenerative disorders such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD). UCH-L1 is detected in cortical Lewy 
bodies and neurofibrillary tangles in patients with diffuse Lewy 
body disease and AD, respectively [2]. Down-regulation and ex-
tensive oxidative modification of UCH-L1 have been observed in 
the brains of AD and PD patients [3]. A missense mutation, I93M, 

in UCH-L1 has been identified in patients with autosomal domi-
nant familial PD [4], and an S18Y mutation in UCH-L1 has been 
reported to exert a neuroprotective effect against PD [5], although 
these genetic studies are controversial [6, 7]. 

Recently, lipid rafts have attracted interest in neurodegenera-
tion. Lipid rafts are specialized membrane microdomains that are 
enriched in cholesterol and glycosphingolipids. They serve as plat-
forms for the assembly of signaling molecules and regulate recep-
tor-mediated signal transduction and endocytosis [8, 9]. Changes 
in lipid rafts content are present in many neurodegenerative 
diseases such as AD, PD, Huntington’s disease (HD), amyotrophic 
lateral sclerosis (ALS), and prion disease [10]. Also, significant 
alteration in numerous proteins in lipid rafts has been reported 
in AD and ALS mouse models [11, 12]. Aβ, α-synuclein, mutant 
huntingtin and prion, which are key players of AD, PD, HD and 
prion disease, respectively, have been found in lipid rafts [13-16] 
and the main proteins responsible for Aβ generation such as amy-
loid precursor protein, β-secretase [17, 18], and presenilin-1 [19] 
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are present in lipid rafts. Many PD-associated gene products such 
as parkin, PINK1, DJ-1, and LRRK2 [20-23] also associates with 
lipid rafts, implying that lipid rafts may play a common role in 
many neurodegenerative diseases. 

Additionally, recent evidence indicates that regional and inter-
cellular spreading of tau and α-synuclein are significant in the 
pathogenesis of AD and PD, respectively. It has attracted much 
attention because intercellular spreading may explain unveiled 
pathogenesis and help with developing novel therapeutic interven-
tions such as blocking secretion and reuptake [24, 25]. Previously, 
we demonstrated that α-synuclein is internalized into microglia in 
a lipid raft-dependent manner [26]. In addition, parkin, which has 
also been known to associate with lipid rafts, regulates caveolin-1 
expression, which alters lipid rafts and the cell-to-cell transmission 
of α-synuclein [27], implying that lipid raft components may be 
involved in cell-to-cell transmission of α-synuclein.

Although UCH-L1 is mainly cytosolic protein, 20~50% of 
UCH-L1 is membrane-associated [28-30]. However, association 
of UCH-L1 with lipid rafts has not been explored. In the present 
study, we explored whether UCH-L1 associates with lipid rafts 
and whether altered UCH-L1 expression is involved in lipid raft 
function. Additionally, we explored the role of UCH-L1 in cell-to-
cell transmission of α-synuclein.

MATERIALS AND METHODS

Reagent and antibodies

Antibodies against flotillin-1 and flotillin-2 were purchased 
from BD Bioscience (Fraklin Lakes, NJ, USA). Antibodies against 
GAPDH, CD71 (transferrin receptor) and UCH-L1 were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
Methyl-β-cyclodextrin and LDN-57444 were purchased from 
Sigma-Aldrich (St Louis, MO, USA). Rhodamine-conjugated 
transferrin and BOIPY® FL C5-Lactosylceramide were purchased 
from Molecular Probes (Leiden, the Netherlands). 

Cell culture and transfection

SH-SY5Y, Hela, and human alpha-synuclein overexpressing SH-
SY5Y cells were grown in Dulbecco’s modified Eagle’s medium 
supplemented with 10% fetal bovine serum. Primary cortical 
neurons were cultured from Sprague-Dawley rat embryos at em-
bryonic day 18 and maintained in Neurobasal medium (Invitro-
gen, Carlsbad, CA, USA) with L-glutamine and B-27 supplement 
(Invitrogen). Hela cells were transfected using lipofectamine 2000 
(Invitorgen) according to the manufacturer’s instruction. After 24 
hr of transfection, the cells were used for further experiments. The 
plasmid for UCH-L1-myc was kindly provided by Prof. K. J. Lee 

at Ewha Womans University, Korea. UCH-L1 knockdown SH-
SY5Y cells were prepared using lentiviral constructs that expressed 
shRNA for UCH-L1 (Sigma-Aldrich) as described previously [31] 
and selected using puromycin.

Western blot

Cells were lysed in ice-cold RIPA buffer (50 mM Tris-HCl, pH 
7.4, 150 mM NaCl, 0.25% sodium deoxycholate, 1% Triton X-100, 
0.1% SDS and protease inhibitor mixture (GenDEPOT, Barker, 
TX)) for 20 min on ice after sonication for 3 s. The lysates were 
cleared by centrifugation at 13,000×g for 30 min at 4oC. The super-
natants were collected and mixed with sample buffer, resolved by 
SDS-PAGE, transferred to a nitrocellulose membrane and immu-
noblotted with the indicated antibodies. They were then detected 
using an enhanced chemiluminescence system (Thermo Fisher 
Scientific, Waltham, MA, USA).

Isolation of lipid rafts

Cell were washed three times with ice-cold phosphate-buffered 
saline (PBS) and lysed in ice-cold PBS containing 1% Triton X-100 
and protease inhibitor mixture. After the lysates were incubated 
for 10 min at 4oC, they were centrifuged at 13,000×g for 15 min 
at 4oC. Supernatants were used as the soluble fraction. The pel-
lets were washed with ice-cold PBS, solubilized with 1 x sample 
buffer and used as the insoluble fraction. These individual frac-
tions were analyzed by SDS-PAGE and Western blot. For sucrose 
density gradient centrifugation fractionation analysis, cells were 
harvested in lysis buffer (25 mM MES, pH 6.5, 50 mM NaCl, 1 
mM Na3VO4 and 1% Triton X-100) with protease inhibitor mix-
ture and phosphatase inhibitor added, and incubated for 30 min at 
4oC with Dounce homogenization every 10 min. The lysates were 
adjusted to 42.5% sucrose, overlaid with 35 and 5% sucrose in lysis 
buffer without Triton X-100. The mixed lysates were centrifuged 
at 275,000×g for 20 hr at 4oC. From the top of the gradient, eleven 
1-ml fractions were collected, and some volumes of each fraction 
were analyzed by Western blot. 

Endocytosis assay

Endocytosis assay was performed as described previously [22]. 
SH-SY5Y cells were incubated with 50 nM BOIPY® FL C5-
Lactosylceramide and 2.5 µg/ml rhodamine-conjugated transfer-
rin for indicated times. The cells were then fixed and observed by 
confocal microscopy. The intensity was analyzed by ImageJ (http://
imagej.nih.gov/ij/).

Cell-to-cell transmission assay using dual chamber 

Cell-to-cell transmission assay was performed as described pre-
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viously [27, 32]. α-Synuclein-overexpressing SH-SY5Y cells [26] as 
donor cells were differentiated by treatment with 50 µM retinoic 
acid for 5 days. Then, SH-SY5Y cells cultured on coverslips on 12-
well plates as recipient cells were cocultured with differentiated 
α-synuclein-overexpressing SH-SY5Y cells cultured on the insert 
for 12 h. The recipient cells were prepared for staining with the 
anti-α-syn antibody (BD Bioscience, Franklin Lakes, NJ, USA).

Confocal microscopy

Cells cultured on coverslips were washed twice with PBS and 
fixed in 4% paraformaldehyde for 10 min at room temperature; 
the fixed cells were then washed with PBS and incubated with PBS 
containing 0.1% Triton X-100 for 10 min at room temperature. 
After they were washed with PBS, the cells were blocked with PBS 
containing 1% bovine serum albumin (GenDEPOT, Barker, TX, 
USA) for 1 hr at room temperature, and then incubated overnight 
with primary antibodies at 4oC. Preparations were then stained 
with fluorescence-conjugated secondary antibody (Jackson Im-

munoresearch, West Grove, PA, USA) for 2 h, mounted, and ob-
served using a model LSM510 or LSM710 confocal microscope 
(Carl Zeiss, Jena, Germany).

Statistical analysis

All values are expressed as the mean±SEM. Statistical signifi-
cance was evaluated using Graphpad Prism 5 (San Diego, CA, 
USA).

RESULTS

UCH-L1 associates with lipid rafts

To explore whether UCH-L1 associated with lipid rafts in the 
same way as other PD-associated proteins, we first isolated lipid 
rafts of SH-SY5Y cells based on their solubility in 1% Triton X-100 
on ice [33] and performed Western blot. As shown in Fig. 1A, we 
observed about ~20% of total UCH-L1 in the cold Triton X-100 
insoluble fraction, and we obtained similar results in the primary 

Fig. 1. UCH-L1 associates with lipid rafts. (A, B) SH-SY5Y cells (A) and rat primary neurons (B) were lysed in ice-cold 1% Triton X-100 buffer and 
fractionated as soluble or insoluble fractions, and then the samples were analyzed by Western blot. (C) After the treatment of SH-SY5Y cells with 10 
mM MβCD for 1 h, the cells were lysed in ice-cold 1% Triton X-100 buffer and fractionated; the soluble and insoluble fractions were then analyzed by 
Western blot. Values obtained are from three independent experiments. *p<0.05, **p<0.01 against control by unpaired t-test. (D, E) SH-SY5Y (D) and 
rat primary neurons (E) were fractionated by sucrose gradient centrifugation fractionation assay in the presence or absence of 10 mM MβCD, and the 
lysates were then analyzed by Western blot.
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neurons (Fig. 1B). When SH-SY5Y cells were treated with methyl-
β-cyclodextrin (MβCD), a cholesterol-depleting agent, to exclude 
the possibility that UCH-L1 was isolated as a contaminant of lipid 
raft preparations [34], UCH-L1 was translocated into the Triton 
X-100 soluble fraction (Fig. 1C). To further confirm these observa-
tions, we isolated lipid rafts using sucrose density gradient centrif-
ugation fractionation [22], and we also observed a small portion of 
UCH-L1 in the low-density lipid raft fractions (fractions #4~#6) 
of SH-SY5Y cells and primary neurons. Additionally, treatment 
with MβCD induced the translocation of UCH-L1 into non-lipid 
rafts fractions such as flotillin-1 (flot-1), a lipid raft marker (Fig. 

1D and 1E), suggesting that UCH-L1 associates with lipid rafts as 
a lipid raft protein and not as a contaminant.

UCH-L1 regulates lipid raft-dependent endocytosis

In our previous report, DJ-1, a PD-associated genes, associate 
with lipid rafts and regulates lipid raft-dependent endocytosis in 
astrocytes [22] by regulating flot-1 and caveolin-1 (cav-1) expres-
sion [35]. Parkin, which has been known to associate with lipid 
rafts [20], also regulates lipid raft-dependent endocytosis in MEF 
cells through regulating cav-1 expression [27]. To explore whether 
altered UCH-L1 expression was involved in lipid raft function, we 

Fig. 2. UCH-L1 regulates lipid raft-dependent endocytosis. (A) Western blot was performed using lysates of NT and UCH-L1 KD #1 and #2 SH-SY5Y 
cells. (B) The cells were lysed in ice-cold 1% Triton X-100 buffer and fractionated as soluble or insoluble fractions, and then the samples were analyzed 
by Western blot. (C) The cells were incubated with 50 nM BOIPY® FL C5-Lactosylceramide and 2.5 μg/ml rhodamine-conjugated transferrin for the 
indicated times. (D) SH-SY5Y cells were treated with LDN-57444 for 24 h, and then incubated with 50 nM BOIPY® FL C5-Lactosylceramide and 2.5 
μg/ml rhodamine-conjugated transferrin for the indicated times. The cells were then fixed and observed by confocal microscopy. The intensity was ana-
lyzed with the ImageJ program. Values are representative of three independent experiments. Scale bar indicates 20 μm. *p<0.05, **p<0.01 against control 
by one-way ANOVA.
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generated stable cell lines with downregulated UCH-L1 expres-
sion. UCH-L1 expression was efficiently downregulated in both 
fractions (Fig. 2A, B), and then performed general endocytosis 
assay using these cell lines. We used lactosylceramide as a marker 
for lipid raft-dependent endocytosis [36, 37] and transferrin as a 
marker for clathrin-dependent endocytosis [38, 39]. As shown in 
Fig. 2C, downregulation of UCH-L1 in SH-SY5Y cells enhanced 
lipid raft-dependent endocytosis, but not clathrin-dependent en-
docytosis. The treatment with LDN-57444, a UCH-L1 inhibitor 
that inhibits UCH-L1 hydrolase activity [40, 41], also enhanced 

lipid raft-dependent, but not clathrin-dependent endocytosis, sug-
gesting that UCH-L1 regulates lipid raft-dependent endocytosis 
(Fig. 2D). Next, to explore whether UCH-L1 regulated lipid raft-
dependent endocytosis by regulating the expression of flot-1 or 
cav-1 in the same way as DJ-1 or parkin, we performed Western 
blot analysis. We observed no changes in flot-1 or -2 expression 
in UCH-L1 knock-down (KD) cell lines (Fig. 3A) or with LDN-
57444 treatment (Fig. 3B). Overexpression of UCH-L1 did not 
alter the expression of flot-1 and cav-1 or -2 (Fig. 3C), suggesting 
that lipid raft-dependent endocytosis changes with UCH-L1 do 

Fig. 3. UCH-L1 does not regulate the expression of caveolins and flotillins. (A) NT and UCH-L1 KD #1 and #2 SH-SY5Y cells were lysed. (B) SH-SY5Y 
cells were treated with LDN 57444 for 24 h, and the cells were lysed. (C) Hela cells were transfected with myc-tagged UCH-L1, and the cells were lysed. 
The lysates were then analyzed by Western blot. Values obtained are from three independent experiments.



382 www.enjournal.org https://doi.org/10.5607/en.2018.27.5.377

Seo-Jun Kang, et al.

not depend on the expression of flotillins and caveolins. 

UCH-L1 regulates cell-to-cell transmission of α-synuclein

Previously, we demonstrated that extracellular α-synuclein is 
internalized into cells in a lipid raft-dependent manner [26], and 
also, signaling for lipid raft-dependent endocytosis is involved 
in cell-to-cell transmission of α-synuclein [32]. Accordingly, we 
explored whether UCH-L1 regulates cell-to-cell transmission 

of α-synuclein. As shown in Fig. 4A, cell-to-cell transmission of 
α-synuclein was greater in UCH-L1 KD cell lines than in the con-
trols. In addition, UCH-L1 inhibition by LDN-57444 treatment 
also enhanced cell-to-cell transmission of α-synuclein (Fig. 4B). 
Endogenous α-synuclein expression did not altered by down-
regulation of UCH-L1 (Fig. 4C). These data suggest that UCH-
L1 regulates cell-to-cell transmission of α-synuclein via lipid raft-
dependent endocytosis. 

Fig. 4. UCH-L1 regulates cell-to-cell transmission of α-synuclein. (A) NT and UCH-L1 KD #1 and #2 SH-SY5Y cells were co-cultured with differenti-
ated α-synuclein overexpressing SH-SY5Y cells for 12 hr using dual chamber. (B) SH-SY5Y cells were treated with LDN-57444 for 24 h, and further 
co-cultured with differentiated α-synuclein overexpressing SH-SY5Y cells for 12 hr using dual chamber. The cells were then fixed and immunostained 
with the anti-α-synuclein antibody. The intensity was analyzed with the ImageJ program. Values are representative of three independent experiments. 
*p<0.05, **p<0.01 against control by one-way ANOVA (A) and unpaired t-test (B). (C) NT and UCH-L1 KD #1 and #2 SH-SY5Y cells were lysed. The 
lysates were then analyzed by Western blot. Values obtained are from three independent experiments.
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DISCUSSION

The accumulating evidence indicates that the molecular path-
ways of neurodegeneration triggered by each mutation may be 
shared by several genetic forms of PD and may also play a role in 
the common sporadic disease [42-46]. Considering that the sub-
localization of proteins is very important for protein function and 
that many PD-associated proteins, including a-synuclein, parkin, 
PINK1 and LRRK2, associate with lipid rafts, it is very informative 
to know whether other PD-associated proteins also associate with 
lipid rafts to elucidate the common molecular pathways involved 
in lipid rafts.

In the present study, we demonstrated that UCH-L1 also associ-
ates with lipid rafts. Lipid modifications of proteins such as pal-
mitoylation and farnesylation facilitate the association of soluble 
proteins with cell membranes. Palmitoylation has been known 
to play important roles in trafficking into lipid rafts [47]; for in-
stance, DJ-1 has been known to associate with lipid rafts via pal-
mitoylation [22]. On the contrary, farnesylation drives membrane 
proteins to non-rafts domains [48], and UCH-L1 has been known 
to associate with membranes via farnesylation [30]. Nevertheless, 
UCH-L1 also associates with lipid rafts; FTI-277, a farnesylation 
inhibitor [49], and 2-bromopalmitate, a palmitoylation inhibitor 
[22] did not affect the association of UCH-L1 into lipid rafts (data 
not shown), suggesting that UCH-L1 associates with lipid rafts in 
palmitoylation- and farnesylation- independent manners, which 
is also supported by the finding that UCH-L1 membrane associa-
tion is neuron specific and not dependent on farnesylation [50]. 
UCH-L1 also lacks obvious lipid interaction domains, but many 
deubiquitinases operate as part of larger protein complexes, which 
may induce the association of UCH-L1 with lipid rafts [1]. Farne-
sylated H-ras also dynamically associates with lipid rafts by bound 
nucleotides, regulating downstream signals [51]. More studies will 
be needed to explore how UCH-L1 associates with lipid rafts.

We also demonstrated that UCH-L1 regulates lipid raft-depen-
dent endocytosis, but it is not dependent on the expression and 
degradation of caveolin-1 and flotillin-1, unlike DJ-1 and parkin. 
UCH-L1 is intimately involved in regulating protein ubiquitina-
tion, which has emerged as a common element in the internaliza-
tion of plasma membrane proteins. Cell surface turnover of GLT-
1 is mediated by ubiquitination [41], and ubiquitinated EGFR has 
been reported to be endocytosed through a lipid raft-dependent 
route [52]. Although we could not identify the exact substrates of 
UCH-L1 for regulating lipid raft-dependent endocytosis, UCH-
L1 may participate in lipid raft-dependent endocytosis by regulat-
ing the ubiquitination or deubiquitination of lipid raft proteins.

Interestingly, loss of UCH-L1 enhanced lipid raft-dependent en-

docytosis and then, cell-to-cell transmission of α-synuclein. Prion-
like propagation of protein inclusions such as α-synuclein, tau, and 
mutant huntingtin in many neurodegenerative diseases has re-
ceived a great deal of attention. Although the detailed mechanism 
of intercellular propagation of protein inclusions has not been well 
understood, this propagation has been anticipated to explain the 
unveiled pathogenesis of many neurodegenerative diseases [25]. 
Given that the molecular pathways of neurodegeneration trig-
gered by each mutation may be shared by several genetic forms 
of PD, it is unsurprising that many PD-related genes have been 
shown to affect one or more of these processes. Loss of parkin has 
been reported to be involved in lipid rafts-dependent endocytosis 
and cell-to-cell transmission of α-synuclein [27]. Glucocerebro-
sidase depletion, which is strongly associated with PD, promotes 
propagation of α-synuclein aggregates [53]. The knock-down of 
some orthologs of some PD-related genes such as catp-6 (AT-
P13A2 ), djr-1.2 (DJ-1 ), lrk-1 (LRRK2 ), pdr-1 (Parkin ) has been 
also reported to increase cell-to-cell transmission of α-synuclein in 
a C. elegans BiFC model [54].

Decreased UCH-L1 expression and oxidative modification of 
UCH-L1 have been observed in the brains of AD and PD patients 
[3]. The overexpression of UCH-L1 reduces the number of amy-
loid beta plaques and improves memory deficits in AD mice [55], 
suggesting that UCH-L1 has a protective effect in AD models. Ac-
cordingly, enhancing UCH-L1 activity may become a useful target 
against AD and PD progression.

In summary, we demonstrated that UCH-L1 associates with 
lipid rafts in the same way as other PD-associated gene products, 
and also that UCH-L1 regulates lipid raft-dependent endocyto-
sis and cell-to-cell transmission of alpha-synuclein. This study 
provides more evidence that many PD-associated gene products 
share common signaling pathways to explain the pathogenesis of 
PD and evidence of UCH-L1 activity as a useful target against the 
progression of PD.
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