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In vivo tracking of intravenously injected
mesenchymal stem cells in an Alzheimer’s
animal model
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Abstract
Purpose: The purpose of this study was to investigate how intravenously injected bone marrow-derived mesenchymal stem
cells (BMSCs) are distributed in the body of an Alzheimer’s disease (AD) animal model. Methods: Stem cells were collected
from bone marrow of mice and labeled with Indium-111 (111In). The 111In-labeled BMSCs were infused intravenously into
3�Tg-AD mice in the AD group and non-transgenic mice (B6129SF2/J) as controls. Biodistribution was evaluated with a
gamma counter and gamma camera 24 and 48 h after injecting the stem cells. Results: A gamma count of the brain showed a
higher distribution of labeled cells in the AD model than in the control group at 24 (p ¼ .0004) and 48 h (p ¼ .0016) after
injection of the BMSCs. Similar results were observed by gamma camera imaging (i.e., brain uptake in the AD model was
significantly higher than that in the control group). Among the other organs, uptake by the spleen was the highest in both
groups. More BMSCs were found in the lungs of the control group than in those of the AD group. Conclusions: These results
suggest that more intravenously infused BMSCs reached the brain in the AD model than in the control group, but the numbers
of stem cells reaching the brain was very small.
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Introduction

Alzheimer’s disease (AD) is clinically characterized by

memory loss and progressively impaired learning capac-

ity1,2. More patients with AD are expected in an aging soci-

ety3, so there are concerns about the socioeconomic

problems caused by AD. However, current medications for

AD have poor efficacy and side effects4,5, so efforts are

underway to find new promising therapies.

Therapy using mesenchymal stem cells (MSCs), which

can produce a variety of neurotrophic factors and cyto-

kines6–8, has received attention as an important tool to treat

various degenerative neurological diseases. In particular,

bone marrow-derived MSCs (BMSCs) are relatively free

from immune and ethical problems for clinical applica-

tion9–11. The ultimate goal for stem cell therapy in patients

with a neurological disease is recovery of clinical function,

which must be initiated by stem cells successfully reaching

the host brain. Therefore, studying the tracking and biodis-

tribution of MSCs is important to ensure the safety and

efficacy of MSC therapy.

Various labeling methods, including green fluorescent

vital dyes, luciferase, iron particles, and radioactivity

labeling, have been attempted for tracking MSCs in previous

studies12–17. Of these, radioactivity labeling is a clinically

friendly method with the advantage of in vivo imaging.

Actually, several previous studies have tracked cells using

indium-111 (111In) with a relatively long life of 2.80 days in

various diseases15,18–21.

Stem cell therapy via the intravenous (IV) route is con-

venient to apply in clinical practice, so clinicians have

become increasingly interested in this method22–24. Despite

the fact that some studies have reported that IV-transplanted

MSCs can migrate into inflamed and ischemic areas of the

brain25–27, the final fate of IV-applied MSCs remains
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elusive22. We have questioned whether IV-administered

MSCs can successfully migrate to the intended target brain

tissue in patients with a neurological disease in clinical

practice.

Based on these considerations, the present study evalu-

ated the biodistribution of MSCs and determined whether

IV-applied, radioactively labeled MSCs could reach the

brain in an AD mouse model.

Materials and Methods

Isolation and Culture of Mouse BMSCs

B6129SF2/J mice (Jackson Laboratories, Bar Harbor, ME,

USA), weighing 20–25 g, were housed in groups of two or

three under environmentally controlled conditions at 23 +
2�C and 50 + 10% relative humidity and given free access

to food and water. All experimental procedures were

approved by the Institutional Animal Care and Use Commit-

tees of Ajou University School of Medicine, Suwon, Repub-

lic of Korea (IACUC No. 2015-0068). The method for

BMSC preparation from mice was based on the protocol

by Soleimani and Nadri28. Mouse BMSCs were isolated

from the femurs of 6–8-week-old female B6129SF2/J mice.

Both ends of the tibia and femurs were removed, and the

remaining bones were centrifuged at 762� g for 20 min. The

supernatant was discarded, and the cell pellets were resus-

pended in phosphate-buffered saline (PBS). After centrifu-

gation, the cells were resuspended and incubated in

high-glucose Dulbecco modified Eagle’s medium containing

15% fetal bovine serum and 1% penicillin/streptomycin

(Invitrogen, Carlsbad, CA, USA) at 37�C in a 5% fully

humidified CO2 incubator. Non-adherent cells were

removed 18 h later by replacing the medium (passage 0).

On day 10 of incubation, the cells were detached with

0.25% trypsin/0.1% EDTA (Sigma, St. Louis, MO, USA)

and replated on 100-mm culture dishes (passage 1). When

these primary cultures reached 80% confluence, the cells

were harvested using 0.25% trypsin and subcultured. Mouse

BMSCs were characterized by immunofluorescence and

fluorescence-activated cell sorter analysis at passage 429.

Labeling of Mesenchymal Stem Cells with
111In Tropolone

Tropolone (1–2 mg; Sigma) was dissolved in 1 mL of normal

saline, and 80 mL of tropolone solution was mixed with 37–

111 MBq (1–3 mCi) of 111InCl3 (physical half-life ¼ 2.83

days, g-energy ¼ 245 and 173 keV; PerkinElmer, Waltham,

MA, USA) in 0.05 N HCl. The reaction mixture was incu-

bated for 15 min at room temperature (pH 7.2)30. Before

labeling, the BMSCs were washed with PBS, centrifuged

at 1000 rpm for 3 min, and resuspended in 1 mL PBS.
111In-tropolone was added to the BMSC suspension and

incubated at room temperature for 20 min. After the incuba-

tion, the BMSCs were centrifuged at 1000 rpm for 3 min, and

the supernatant and cell pellets were collected separately to

calculate labeling efficiency.

In Vivo Distribution Using a Gamma Counter
and Gamma Camera
111In-labeled BMSCs (7.4 MBq, 1.0 � 106 cells/mouse) sus-

pended in 200 mL of normal saline were injected via a tail

vein into 3�Tg-AD (B6;129-Psen1tm1MpmTg(APPSwe,

tauP301 L)1Lfa/Mmjax, Jackson Laboratories) as the AD

group (n ¼ 28) and non-transgenic mice (B6129SF2/J) as

controls (n ¼ 25). The mice were scanned 24 and 48 h after

injection with a dual-head gamma camera (Multi-SPECT2,

Siemens, Erlangen, Germany) equipped with medium

energy collimators for 10 min in the prone position. The

matrix size was 256 � 256. Circular regions of interest were

drawn for the brain and right thigh (background) on both

anterior and posterior images, respectively, to compare the

biodistribution. The brain uptake ratio was obtained by

dividing brain activity by background activity.

Immediately after acquisition, major organs, including

the brain, kidneys, lungs, liver, and spleen, were excised and

weighed, and radioactivity was measured using a gamma

counter (Gamma-HEs; Shin Jin Medics Inc., Seoul, Korea).

The data are expressed as a percentage of injected dose

(%ID/g) after correction for decay.

Immunofluorescence Staining Using
Confocal Microscope

To detect intravenously transplanted BMSCs, cells were

labeled with PKH26 using a commercial kit (PKH26 red

fluorescence cell linker kit, Sigma-Aldrich, St. Louis, MO,

USA), according to the manufacturer’s instructions31. Briefly,

cells were centrifuged at 322 � g for 3 min in a conical tube,

and the supernatant was discarded. Then 1 mL Diluent C and

4.0� 10�6 M of PKH26 dye were added to cell pellets, which

were incubated at room temperature for 5 min with gentle

inversion. Then the mixture was incubated with 2 mL serum

for 1 min to stop the staining reaction. Stained cells were

centrifuged at 322 � g for 10 min and washed with 10 mL

complete medium prior to being further labeled with 111In.

The radiolabeling and intravenous injection of BMSCs were

performed 30 min after PKH26 labeling.

To observe intracerebral BMSCs, brains were harvested

from animals and fixed overnight with 4% paraformalde-

hyde in 0.1 M phosphate buffer. Then the samples were

embedded in paraffin blocks and sectioned at 5 mm on a

sliding microtome. Sections were deparaffinized by incubat-

ing them in an oven for 20 min at 55�C and rinsing three

times with PBS (Gibco, Scotts Valley, CA, USA). Next, they

were incubated with 4,6-diamidino-2-phenylindole (DAPI)

at 1 mL/mL (Fluka, Morristown, NJ, USA) for 15 min at

room temperature to counterstain the nuclei, and then

mounted using a cover slide. PKH26 (red) and DAPI (blue)

fluorescent signals in tissues were captured and analyzed
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using a Nikon A1 confocal laser scanning microscope

(Nikon, Tokyo, Japan).

Statistical Analysis

All values were tested for a normal distribution using the

Kolmogorov–Smirnov test, and none of the datasets were

normal. Thus, non-parametric statistics were used for the

data analysis, and all values are presented as median and

interquartile range.

To compare the distribution of 111In-labeled BMSCs in

each organ between the AD model and controls, radioactiv-

ity was analyzed with the Mann–Whitney test. The brain

uptake ratio acquired from the gamma camera images was

compared between the AD and control models using the

Mann–Whitney test. The Wilcoxon test was used to evaluate

changes in distribution between 24 and 48 h in both groups.

Two-tailed p-values <0.05 were considered significant.

MedCalc statistical software ver. 17.6 (MedCalc Software

bvba, Ostend, Belgium; http://www.medcalc.org; 2017) was

used for all statistical analyses.

Results

In Vivo Distribution of 111In-Labeled BMSCs by the
Gamma Counter

Radioactivity was measured 24 h after the BMSCs were

injected using a gamma counter and revealed that brain

uptake was significantly higher in the AD model than in the

controls (0.31% vs. 0.21%, p ¼ 0.0004). Significant differ-

ences in the distributions in the lungs, kidneys, and liver

were observed between the AD model and controls 24 h after

injection of the BMSCs. Radioactivity in the lungs was sig-

nificantly higher in the controls than in the AD model, and

that in the kidneys and liver was significantly higher in the

AD model than in the controls. The distribution in the spleen

was not different between the AD and control models 24 h

after injection of the BMSCs (p ¼ 0.7618).

Brain uptake remained significantly higher in the AD

model than in the controls 48 h after injection of the BMSCs

(0.38% vs. 0.28%, p ¼ 0.0016). Distribution in other organs,

including the lungs, kidneys, liver, and spleen, was signifi-

cantly different between the two groups 48 h after injection

of the BMSCs. The BMSCs were distributed more in the

kidneys and liver of the AD model than in the controls. The

controls had more BMSCs distributed in the lungs and spleen

than the AD model (Table 1).

Changes in the Distribution of BMSCs with Time by the
Gamma Counter

The changes in the distribution of BMSCs with time accord-

ing to the gamma counter are illustrated in Figure 1. Brain

uptake in the AD model after 48 h was significantly higher

than at 24 h after injection of the BMSCs (p ¼ 0.0156).

Radioactivity in the lungs and spleen decreased significantly

with time, whereas radioactivity in the kidneys and liver

increased significantly with time (Figure 1(a)).

Radioactivity in the brain in controls after 48 h was sig-

nificantly higher than at 24 h after injection of the BMSCs (p

¼ 0.0039). BMSCs in the kidneys and lungs decreased sig-

nificantly with time in the control group, whereas radioac-

tivity in the spleen increased significantly with time. The

distribution in the liver did not change significantly with

time (p ¼ 0.6250, Figure 1(b)).

Brain Uptake by the Gamma Camera

On gamma camera images, 111In-labeled BMSC uptake in

the brains of the AD model was significantly higher 24 h

after injection of the BMSCs than that in the controls (2.53

vs. 1.54, p < 0.0001, Figure 2(a)). Significantly more brain

uptake was noted in the AD model than in the controls 48 h

after administration of the BMSCs (2.67 vs. 1.53, p < 0.0001,

Figure 2(a)).

Brain uptake increased significantly with time in the AD

model when the 24 and 48 h images were compared (p ¼
0.0017, Figure 2(a)). However, brain uptake did not change

significantly with time in the controls (p ¼ 0.3394,

Figure 2(a)).

Representative gamma camera images are shown in

Figure 2(b) and (c).

Table 1. Biodistribution of 111In-Labeled Stem Cells According to the Gamma Counter.

Radioactivity (median (interquartile range), %ID/g)

24 h after stem cell injection 48 h after stem cell injection

AD model Control p-value* AD model Control p-value*

Brain 0.31 (0.30–0.33) 0.21 (0.20–0.23) 0.0004 0.38 (0.32–0.40) 0.28 (0.25–0.29) 0.0016
Lungs 18.48 (17.64–19.66) 29.60 (29.35–30.14) <0.0001 13.06 (9.91–13.56) 16.45 (13.77–18.49) 0.0045
Kidneys 21.87 (21.10–23.54) 18.18 (17.13–19.78) 0.0003 27.19 (24.64–28.88) 15.08 (12.75–16.79) 0.0008
Liver 7.15 (6.87–7.62) 5.10 (4.52–5.79) 0.0031 12.13 (11.24–12.33) 5.38 (4.74–5.88) 0.0005
Spleen 36.29 (35.55–37.20) 35.46 (32.00–38.20) 0.7618 31.78 (31.05–34.14) 55.78 (50.93–56.63) 0.0006

AD: Alzheimer’s disease.
*p-value between AD model and control.
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Confocal Microscopic Analysis of Transplanted BMSCs

To further confirm that MSCs were homing to the brain

following injection into the tail vein, we employed immuno-

fluorescence staining. Confocal microscopy confirmed the

presence of PKH26-111In co-labeled BMSCs in the AD brain

tissue (Figure 3). This confocal microscopy image revealed

that BMSCs labeled with 111In migrated to AD brains within

24 h after injection, and that the migration ability of BMSCs

was not affected by 111In.

Discussion

The therapeutic effects of MSCs in models of AD have been

revealed by various studies32–38. Several effects have been

reported, including inhibition of cell death32, reduction of

Figure 1. Comparison of radioactivity 24 and 48 h after stem cells were injected according to the gamma counter. (a) Significant increases in
radioactivity were seen in the brain, kidneys, and liver of the AD model, whereas that in the in lungs and spleen decreased with time. (b)
Radioactivity in the brain and spleen increased significantly with time in the control group, whereas that in the kidneys and liver decreased
significantly. Liver radioactivity did not change significantly with time.

Figure 2. Brain uptake by gamma camera. (a) The brain uptake ratio was significantly higher in the Alzheimer’s disease (AD) model than in
the controls 24 and 48 h after stem cell injection. Brain uptake in the AD model increased significantly with time, but no significant changes
were observed with time in the control group. (b) Representative image in the AD model 48 h after stem cell injection; slightly increased
uptake can be observed in the brain region, as indicated by the arrow. (c) An arrow indicates that they also showed a slight increase in brain
uptake in a representative control image 48 h after stem cell injection. Although the visual activity of the brain in (b) and (c) seemed to be
similar, the uptake ratio showed significant differences between the two groups (2.67 vs. 1.53, p < 0.0001).
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amyloid deposits37, and rescue of learning and memory def-

icits33,38, which may be induced by the neuroprotective para-

crine effects of MSC-secreted factors39,40. Although

Naaldijk et al.36 reported the therapeutic effects of IV-

injected MSCs in the AD model, there is still a concern about

the delivery of MSCs to the brain via IV administration.

In this context, we investigated whether IV-injected

MSCs would reach the brain using a radioactive isotope

labeling method.

This study confirmed that a small number of the BMSCs

injected IV into AD mice reached the brain. Radioactivity of

BMSCs was significantly higher in the AD model than in the

control group according to the gamma counter and gamma

camera imaging. It is very difficult to know why the BMSCs

were more distributed in the brains of the AD model than in the

controls, because few previous studies have been conducted for

the same purpose. We believe that the distribution of stem cells

in the body may differ depending on the disease model.

The choice of animal model for preclinical studies using

stem cells is critical. In addition, the first step in studying

biodistribution is to use MSCs from the same animal spe-

cies41. We used 3�Tg-AD mice as the AD model and

B6129SF2/J mice as the control in this study. The 3�Tg-

AD mice have been successfully used in previous stem cell

studies42–44. The B6129SF2/J mice have been suggested to

be the best control mice to use for studying 3�Tg-AD

mice45. We used MSCs from B6129SF2/J bone marrow,

which would ideally be sourced from the same species as

the 3�Tg-AD model.

Previous studies have reported that IV-injected stem cells

are mainly distributed in the lungs, liver, and spleen22,46,47,

and these results are not significantly different from the

results of our study. Notably, the distribution of BMSCs in

the lungs was relatively low in the AD model compared with

the control group. The most problematic aspect of IV stem

cell therapy is the initial pulmonary entrapment, and the

accumulation of stem cells in lungs is a key determining

factor for their biodistribution15,22,41,48. Thus, the low lung

uptake that we observed in the AD model may be a mean-

ingful result. We suggest, after careful consideration, that

this is related to the relatively higher brain intake in the

AD model than in the control group. These results suggest

that the distribution of BMSCs in the brain and other organs

may vary depending on the type of mouse model.
111In is a radioactive isotope with a relatively long half-

life of 2.8049 days. Therefore, in our study, the distribution

of BMSCs was traced for a relatively long period after injec-

tion. We were able to follow the changes in BMSC distribu-

tion over time, and, as a result, radioactivity in the lung

decreased with time in both models. Radioactivity was

higher in the kidneys of the AD model over time, whereas

radioactivity in the control group kidneys was lower. Liver

radioactivity increased over time in the AD model, and

uptake by the spleen increased in the control group. These

changes in distribution over time may be explained by sec-

ondary recirculation of stem cells, and this recirculation

could differ depending on the disease model or species,

which is consistent with our results41.

A higher distribution of BMSCs was observed in the brain

of the AD model than the control group according to the

gamma camera images. The imaging results also showed

that brain uptake did not change significantly over time in

the control group, whereas brain uptake increased in the AD

group. Stem cells have never been tracked with gamma cam-

era images in an AD model as shown in this study. We

obtained confocal microscopy images to confirm that the

radioactivity of the brain visible in the gamma camera rep-

resented real stem cells, and we identified BMSCs in brain

parenchymal tissue. In Naaldijk et al.36, confocal images

showed that IV-injected stem cells had reached the brain

of APP/PS1 mice, an AD animal model. Our results are

consistent with those findings.

A limitation of this study is that the gamma camera

images were acquired using human equipment. The

research institute did not have a gamma camera for small

animals, so we obtained the best images possible using a

camera for humans, but quality was inferior. In addition,

because of limitations of the camera resolution, it was dif-

ficult to evaluate the distribution of images in other organs

except the brain. A further tracking study using a more

advanced animal-specific gamma camera such as single

photon emission computed tomography might be needed

to validate our results.

In conclusion, this study suggests that a small number of

stem cells injected IV in an AD model can reach the brain.

Figure 3. Migration of transplanted PKH26-111In co-labeled
BMSCs into the brain of AD mice. A confocal image showing that
intravenously injected stem cells were successfully found in brain
tissue of the AD model. Blue: DAPI; red: PKH26; scale bar ¼ 5 mm;
magnification: �60 for larger images, �470 for small images.
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41. Sensebé L, Fleury-Cappellesso S. Biodistribution of mesench-

ymal stem/stromal cells in a preclinical setting. Stem Cells Int.

2013;2013:1–5.

42. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello

NA, Müller F-J, Loring JF, Yamasaki TR, Poon WW, Green

KN, LaFerla FM. Neural stem cells improve cognition via

BDNF in a transgenic model of Alzheimer disease. Proc Natl

Acad Sci. 2009;106(32):13594–9.

43. Jensen MM, Arvaniti M, Mikkelsen JD, Michalski D, Pinborg
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