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Abstract
Purpose of Review Lung tissues are highly susceptible to airway inflammation as they are inevitably exposed to inhaled
pathogens and allergens. In the lungs, clearance of infectious agents and regulation of inflammatory responses are important
for the first-line defense, where surfactants play a role in host defense mechanisms. In this review, clinical significance of
pulmonary surfactants in asthma has been highlighted.
Recent Findings Surfactants, such as surfactant protein A (SP-A) and SP-D released from alveolar epithelium, reduce pathogen
infection and control immune-cell activation. Especially, SP-D directly binds to eosinophil surface, leading to inhibition of
extracellular trap formation and reduction in airway inflammation. Production of surfactants is commonly determined by both
genetic (single nucleotide polymorphisms) and environmental factors influencing processes involved in the development of
asthma. In addition, nintedanib (an intracellular inhibitor of tyrosine kinases) could increase SP-D levels and is used in patients
with idiopathic pulmonary fibrosis. These findings may provide a possible application of SP-D in asthma.
Summary Surfactants are key players contributing to host defense through maintaining the immune system. As clinical impli-
cations of surfactants involved in asthma have been suggested, further translational studies are needed to apply surfactants as an
effective therapeutic target in patients with asthma.
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Introduction

Pulmonary surfactants, a unique mixture of lipids and pro-
teins, form a layer between the aqueous airway liquid and
the inspired air throughout the lungs. To date, they have been
intensively studied to characterize their synthesis, secretion,
metabolism, and function [1]. Initially, surfactants were
regarded as a biophysical factor, but recent work has sug-
gested an important role in innate and adaptive immunity of
the lungs due to their immunomodulatory properties [2•]. In
addition, the pathogenetic relevance of surfactants in various
lung diseases, such as acute respiratory distress syndrome,
idiopathic pulmonary fibrosis, and pneumonia, has been re-
vealed [3]. The possible involvement of surfactants in the

pathophysiology of asthma with a predominant disturbance
in the airways has also been demonstrated [4]. The following
sections review characteristics, functions, and potential thera-
peutic applications of surfactants in asthma.

Association Between Surfactants and Asthma

Asthma is a major health problem in society, and it is estimat-
ed that more than 300 million people worldwide suffer from
the disease. This number contributes to the high health care
expenditure associated with this disease [5]. This chronic air-
way disease seriously affects children as well as adults and is
considerably increased in urban areas and high-income coun-
tries [6]. Most patients with asthma have mild to moderate
symptoms; however, some patients (approximately 5–10%
of adult asthmatic patients) showmore severe symptoms, high
comorbid burden, and frequent asthma exacerbations. In ad-
dition, patients with severe asthma are in poorly controlled
status despite daily uses of high doses of inhaled corticoste-
roids and additional treatments [7–9]. Because asthma treat-
ment remains a constant clinical challenge, further studies
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about asthma pathophysiology and therapeutics are needed to
improve health, reduce societal costs, and to improve individ-
ual quality of life.

Asthma is commonly characterized by type 2 airway in-
flammation with typical symptoms such as coughing, wheez-
ing, and dyspnea [10]. However, asthma is likely to be not a
single disease, but a heterogeneous disease as multiple pheno-
types or endotypes have been reported, depending on the com-
bination of clinical, demographic, and pathological character-
istics of asthma [11, 12]. Moreover, several immune cells
(mast cells, eosinophils, neutrophils, and innate lymphoid
cells) as well as structural cells (epithelial cells, vessels,
nerves) and released cytokines/mediators have been shown
to contribute to the pathogenesis of asthma [13, 14]. Such a
complexity in pathogenesis and heterogeneity in treatment
responses require further investigations of pathophysiologic
mechanisms and future targets.

Many risk factors, such as genetic predisposition, viral in-
fection, exposure to allergens or pollutants, and changes in
microbiome, are important determinants in various steps of
asthma pathogenesis [15–18]. When environmental factors
are introduced, the airway epithelium is considered a central
regulator (initiation and maintaining) of immune responses
[19]. This first-line barrier not only expresses pattern recogni-
tion receptors but also secretes several components, including
enzymes, mucins, and surfactants as well as cytokines upon
damage to the epithelium [20]. Previously, altered levels of
surfactants in bronchoalveolar lavage fluid or serum samples
were demonstrated to be associated with multiple lung dis-
eases including asthma [21•] (Table 1). In addition, recent
studies have revealed that surfactants play an essential role
in the development of asthma with eosinophilia [22, 23]. To
date, application of surfactants in asthma is still lacking, but
recent studies suggest that surfactants may act beneficially by
supporting pulmonary host defense in some conditions.

Basic Characteristics of Surfactants

Surfactants are composed of approximately 90% lipids and
10% proteins synthesized by alveolar epithelial cells (also
called pneumocytes) enriched in the endoplasmic reticulum
and lamellar bodies (specialized surfactant-storing organ-
elles). In addition, these lipid and protein mixtures are assem-
bled, transported, secreted, and recycled in the alveolar space
[24]. Surfactants are highly dynamic molecules in the context
of a surface exposed to constant compression–expansion dy-
namics (stress and stretch forces) [25, 26]. Although lipid
homeostasis is well regulated under normal physiological con-
ditions, abnormal surfactant metabolism due to oxidation, pro-
teolytic degradation, and inhibition of surfactants leads to re-
spiratory distress with attendant morbidity and mortality [27].

Surfactant-specific proteins comprise 2 types: hydrophilic
surfactants (surfactant protein A (SP-A) and SP-D) and hydro-
phobic surfactants (SP-B, SP-C) [28]. The hydrophilic surfac-
tants play an important physical role in lowering the alveolar
surface-tension, whereas the hydrophobic surfactants are as-
sociated with immune defense mechanisms in the alveolar
space [29]. Particularly, SP-A and SP-D are a subgroup of
mammalian lectins called collectins or C-type lectins which
are composed of oligomers with C-terminal carbohydrate rec-
ognition domains in association with N-terminal collagen-like
domains [30]. In addition to 4 surfactants, 2 novel surfactant
proteins, including SP-G and SP-H, have also been identified
in the lungs [31]; nevertheless, the significance of SP-A and
SP-D in asthma has mostly been highlighted.

SP-B and SP-C are small proteins encoded by single genes
on chromosome 2 and on chromosome 8, respectively [32].
However, both SP-A and SP-D are structurally related
multimeric proteins encoded by a multigene family on chro-
mosome 10 located near other members of the collectin family
[33]. The secreted SP-A is an octadecamer comprising 6 tri-
meric subunits, but the released SP-D is a dodecamer
consisting of 4 trimeric subunits [34]. Although the degree
of multimerization is different between species and even be-
tween individuals, all collectins form multimers to increase
their affinity to pathogens and immune cells [35]. Among
the collectins, SP-D has the largest and most flexible collagen
domain interacting with various bound organisms or cells
(Table 2).

Immunological Aspects of Surfactants

The immune system needs to properly respond to harmful, but
not to harmless molecules to avoid an inappropriate immune
response. Especially, the innate immune system is available
for host defense against initial infection linked to the adaptive
immune system [36]. In the lungs, emerging evidence has
revealed that SP-A and SP-D play an important role in the

Table 1 Altered levels of pulmonary surfactants in patients with asthma

Phenotype Surfactant Sample Observation Reference

Bronchial asthma SP-A/SP-D BALF Increase [76]

SP-D Salivary Increase [77]

SP-D Serum Stable/increase [78], [79]

SP-D Tissue Increase [80]

Severe asthma SP-D BALF Decrease/increase [81•], [82]

SP-D Serum Increase [81•], [83]

SP-D Sputum Increase [82]

Obese asthma SP-A BALF Decrease [84]

AERD SP-D Serum Decrease [59]

AERD, aspirin-exacerbated respiratory disease; BALF, bronchoalveolar
lavage fluid; SP, surfactant protein
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maintenance of immune balance [37]. Increased expressions
of SP-A and SP-D are associated with reduced allergic im-
mune responses [38]; however, surfactant deficiency contrib-
utes to enhanced allergic immune responses [39], indicating
these molecules are a potential negative regulator in asthma.
Functions of SP-A and SP-D in the pathogenesis of asthma are
summarized in Table 3.

Function of Surfactants in Host Defense

SP-A and SP-D act as a pattern recognition receptor facilitat-
ing phagocytosis by binding to viruses, bacteria, and fungi.
The association between viral infections and asthma exacer-
bations is well defined; human rhinovirus, respiratory syncy-
tial virus, and influenza A virus are predominantly associated
with development or exacerbation of asthma [40, 41]. The
severity of asthma exacerbations is commonly due to the lack
of specific antiviral agents. However, surfactants enhance
clearance of viruses via a carbohydrate recognition domain
(CRD)–dependent manner [42••]. More recently, certain
strains of coronavirus have also been revealed to be involved
in asthma exacerbations [43]. A glycoprotein on coronavirus
was specifically recognized by SP-D, but not by mannan-
binding lectin [44].

In addition to viral infection, bacterial infection has been
shown to increase the probability of asthma exacerbation.
Especially, Streptococcus pneumoniae, Haemophilus
influenzae, and Moraxella catarrhalis enhance the risk for
more severe respiratory illnesses and asthma exacerbations
[45]. For S. pneumoniae, SP-A and SP-D bind to the bacterial
cell wall components, such as lipoteichoic acid and peptido-
glycan, via a CRD region [46]. Moreover, these surfactants
have been demonstrated to play an important role in innate
immune responses to H. influenzae [47]. Although SP-A and
SP-D recognize most species of gram-negative bacteria com-
posed of lipopolysaccharide, studies about the effect of sur-
factants against M. catarrhalis are still limited. Nevertheless,
surfactants have been revealed to respond to other pathogenic
bacteria including Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa, and Staphylococcus aureus.

A close association between fungal sensitization and asth-
ma severity was well established by skin-test reactivity to one
or more fungi such as Alternaria tenuis, Cladosporium
cladosporoides, Helminthosorium maydis, and Epicoccum
nigrum [48]. In addition, allergic bronchopulmonary aspergil-
losis occurs in susceptible patients with asthma due to coloni-
zation of Aspergillus fumigatus [49]. SP-A and SP-D bind to
A. fumigatus, leading to phagocytosis by alveolar macro-
phages and neutrophils [50, 51]. Furthermore, a recent study
has shown that SP-D inhibits adhesion of A. fumigatus to the

Table 3 Several functions of pulmonary surfactants in asthma

Surfactant Function Target

SP-A/SP-D Host defense Binding to pathogen Virus, bacteria, and fungi

Induction of phagocytosis Pathogens and apoptotic cells

Immune regulation Suppression of cell maturation (SP-A) Dendritic cells

Enhancement of antigen presentation (SP-D) Dendritic cells

Reduction of cell activation/proliferation Lymphocytes (T cells)

Modulation of cell migration/recruitment Monocytes and neutrophils

Inhibition of extracellular trap formation (SP-D) Eosinophils

SP-B/SP-C Surface film formation Reduction of surface tension Air–liquid interface

Table 2 Summary of the domains presented within each surfactant protein

Type Structure Function

SP-A/SP-D N-terminal domain Stabilization of the oligomeric structure through cysteine-rich region (disulfide bond)

Collagen-like domain Maintenance of molecule shape

Neck domain Nucleation point for refolding

Carbohydrate recognition domain Binding to lipopolysaccharide or carbohydrates at the surface of microorganisms

SP-B/SP-C N-terminal domain Dimerization through Cys residues (SP-B)
Formation of an amphipathic β-hairpin (SP-C)

C-terminal domain Additional saposin-like domains in proSP-B (SP-B)
Stabilization of the proper folding of extremely hydrophobic transmembrane (SP-C)
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epithelium surface [52]. These suggest that surfactants are a
key player of pulmonary defense against infections.

Function of Surfactants in Immune
Modulation

The role of surfactants in the modulation of immune responses
is becoming increasingly clear. Eosinophilia in blood or spu-
tum is commonly found in asthmatics with more severe symp-
toms, worse management, and worse prognosis [53].
Previously, SP-A has been demonstrated to suppress the pro-
duction of interleukin (IL)-8 by eosinophils [54]. Although
multiple functions of eosinophils were suggested, recent stud-
ies have highlighted the role of eosinophil extracellular traps
(EETs) in the type 2 inflammation of severe eosinophilic asth-
ma [55, 56]. Especially, eosinophil granule proteins
(eosinophil-derived neurotoxin) localized in EETs may be re-
lated to asthma severity and lung function decline [57].
However, SP-D directly binds to the eosinophil membrane
and inhibits extracellular trap formation in concentration-
and carbohydrate-dependent manners [58]. A recent study
demonstrated a critical role of SP-D (a negative regulatory
feedback) in asthma; SP-D deficiency could enhance
eosinophil-mediated airway inflammation/remodeling in pa-
tients with aspirin-exacerbated respiratory disease [59•].

Proliferation and activation of lymphocytes are critical for
the induction of the adaptive immune system in asthma. For
example, T lymphocytes release IL-5 which leads to the dif-
ferentiation, recruitment, activation, and survival of eosino-
phils [60], but lymphocyte activity was downregulated by
SP-A and SP-D [61]. Moreover, surfactant treatment inhibited
the ability of lymphocytes to produce IL-2 [62, 63] which is a
key cytokine for the induction of allergic immune responses
[64]. However, dramatically augmented IL-13 concentration
was found in SP-A or SP-D deficiency [65, 66], leading to
goblet cell hyperplasia, airway hyperactivity, and tissue re-
modeling [67]. Furthermore, SP-A and SP-D decrease prolif-
eration of lymphocytes in response to house dust mite aller-
gens in a dose-dependent manner [68]. Taken together, sur-
factants have a potential benefit in 2 aspects of asthma patho-
genesis: reduction of asthma exacerbation and attenuation of
type 2 airway inflammation (Fig. 1).

Potential Therapeutic Applications
of Surfactants

Surfactant replacement was established as a novel therapeutic
strategy in patients with surfactant deficiency. In the 1960s,
the first attempt of exogenous surfactant administration was
made in respiratory distress syndrome (RDS) in preterm in-
fants, leading to reduction in mortality, the incidence of

pulmonary air leak, and the risk of chronic lung disease [69].
In addition, surfactant therapy was beneficial in infants with
pneumonia and in children with acute lung injury (ALI) or
acute respiratory distress syndrome (ARDS); however, exten-
sion of surfactant therapy to adults with ALI or ARDS failed
[70, 71]. This failure may be associated with an inability of the
surfactants to substantially impact the underlying pathophys-
iology of ALI and ARDS in adults. Although numerous sub-
sequent trials were performed in neonatal RDS, clinical appli-
cations have not been conducted in asthma. Nevertheless, the
development of pharmaceutical surfactants may provide a
promising therapeutic approach to asthma treatment in chil-
dren, but not in adults.

To date, animal-derived (from bovine or porcine origin)
and synthetic surfactants (protein-free) are available.
However, natural surfactants have some limitations such as
costs, biological risk, and inconsistent production. Therefore,
a need of synthetic surfactants, which improve immunological
concerns and give consistent response, has emerged.
Recently, a third-generation surfactant (CHF5633) yielded
promising results for RDS therapy [72, 73], suggesting syn-
thetic surfactants have better efficacy. In addition to commer-
cially available surfactants, other factors affecting endogenous
or exogenous surfactant production have been identified. In

Fig. 1 Roles of pulmonary surfactants in maintenance of normal lung
function. In asthmatic patients, environmental or genetic factors cause
deficiency of surfactants, which are important for host defense and
immunomodulation. In the absence of surfactants, inhaled exposures
such as allergens, pollutants, and microorganisms enhance epithelium
damage or cytokine production, leading to airway inflammation/
remodeling associated with lung dysfunction. SP, surfactant protein
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particular, antenatal corticosteroid treatment showed benefi-
cial effects on inducing surfactant production bymaturation of
alveolar epithelial cells [74]. Moreover, nintedanib treatment
has been revealed to modulate surfactant production [75].
Although nintedanib was neither first developed to enhance
surfactant production nor intended to be used for asthma man-
agement, this medication may extend further approaches to
surfactant replacement therapy, especially in patients with se-
vere eosinophilic asthma who suffer from frequent respiratory
infections and asthma exacerbations. Further investigations
are required to find safe and effective ways for applying sur-
factants as correct targets in patients with asthma.

Surfactant treatment has some clinical issues and limita-
tions. First, surfactants are commonly administered by an
endotracheal/oropharyngeal tube or a nebulizer; however,
the tube for using surfactants can damage of patient airways
[74]. Positive pressure by a ventilator can also induce intersti-
tial lung injury. Secondly, there remains a risk of immune
responses to animal-derived proteins or treatment-related in-
fections [67]. Thirdly, harvest of natural surfactants from bo-
vine or porcine lungs is difficult to scale. Nevertheless, sur-
factant therapy may be expected as an advanced treatment for
various lung diseases when such limitations are solved.

Conclusions

Pulmonary surfactants play an important role in the first de-
fense mechanism of the lungs constantly exposed to environ-
mental factors, as they act as a barrier by removing pathogens
and by modulating inflammatory responses. Surfactant
(especially SP-D) imbalance is responsible for enhancing type
2 airway inflammation in asthma as immune cell activation
(especially, eosinophils, and lymphocytes) and impaired reg-
ulation of immune cell–epithelium interactions. Therapeutic
interventions improve surfactant homeostasis by stimulating
the endogenous surfactant production or by exogenous surfac-
tant supplementation, which may have a potential benefit in
asthmatic patients with eosinophilia, although further studies
are needed to explore the possibility of surfactants as a
targeted therapy.
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