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Abstract: Background: Spatial epidemiology is used to evaluate geographical variations and
disparities in health outcomes; however, constructing geographic statistical models requires a
labor-intensive process that limits the overall utility. We developed an open-source software for
spatial epidemiological analysis and demonstrated its applicability and quality. Methods: Based on
standardized geocode and observational health data, the Application of Epidemiological Geographic
Information System (AEGIS) provides two spatial analysis methods: disease mapping and detecting
clustered medical conditions and outcomes. The AEGIS assesses the geographical distribution of
incidences and health outcomes in Korea and the United States, specifically incidence of cancers and
their mortality rates, endemic malarial areas, and heart diseases (only the United States). Results:
The AEGIS-generated spatial distribution of incident cancer in Korea was consistent with previous
reports. The incidence of liver cancer in women with the highest Moran’s I (0.44; p < 0.001) was 17.4
(10.3–26.9). The malarial endemic cluster was identified in Paju-si, Korea (p < 0.001). When the AEGIS
was applied to the database of the United States, a heart disease cluster was appropriately identified
(p < 0.001). Conclusions: As an open-source, cross-country, spatial analytics solution, AEGIS may
globally assess the differences in geographical distribution of health outcomes through the use of
standardized geocode and observational health databases.

Keywords: spatial epidemiology; disease clustering; geographical information system

1. Introduction

A comprehensive understanding of the geospatial patterns of the incidence and outcomes
of medical conditions is important for establishing hypotheses to identify disease-related factors
or for planning to improve public health [1,2]. Disease mapping and clustering are promising
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epidemiological methodologies for evaluating the spatial distribution of diseases, both cross-sectionally
and longitudinally [3–8].

Despite the accessibility of the available observational health databases and developments in
spatial methodology, the required labor-intensive process often hinders active and widespread adoption
of spatial analysis. In general, most efforts used to draw disease maps are aimed at acquiring geographic
information system (GIS) data, preprocessing raw data, and visualizing analytical results.

To overcome the complexity of spatial analysis, we propose a standardized spatial analysis
using global standardized observational health and GIS databases. This strategy enables large-scale
exploration among diverse data partners, which is not limited to specific countries, and ensures
transparency in research and improved reusability. In this study, we used standard medical terminology
and homogeneous observational health data structures constructed through Observational Health Data
Science and Informatics (OHDSI) collaborative. OHDSI is a global community of clinical application
researchers, data partners, and open-source analytics tools aimed at obtaining reliable medical evidence
from large-scale observational health data [9–11]. The OHDSI community leverages the Observational
Medical Outcomes Partnership (OMOP)-Common Data Model (CDM) for standardization of data
structure and semantics. Through these efforts, institutions from various countries, which have
electronic health records and administrative claim data, have completed the conversion to the proposed
OMOP-CDM [12]. The OHDSI claims that these are more than three billion patient data in OMOP-CDM
in 152 databases from 18 countries [13].

The Global Administrative Areas (GADM) database provides high spatial resolution for all the
subdivisions across 254 countries [14]. Thus, combining the OMOP-CDM and GADM databases
allows the standardization of network-research-protocol sharing that can be applied to heterogeneous
observational health databases among data holders across the globe.

Considering the prospects of standardizing these analysis techniques and making them
available via open-source sharing, the first objective of this study was to develop an Application of
Epidemiological Geographic Information System (AEGIS), an interactive tool for designing spatial
epidemiological analysis based on a standardized observational health database and GIS database.
The second objective of this investigation was to assess the applicability and methodological quality as
a cross-national spatial analysis solution in comparison with those described by relevant published
studies and reports. As proof-of-concept, we used two different reimbursement healthcare databases
from South Korea and the United States to map the distribution of major cancer, malaria infections,
and heart diseases (only the United States) with well-known geographical patterns of incidence,
and investigate the areas of concentration.

2. Materials and Methods

2.1. AEGIS

AEGIS, an interactive spatial analytical solution based on OMOP-CDM version 5 and GADM,
allows the following functions: (1) data preprocessing to prepare epidemiological analysis, including
linking medical data with GIS data; (2) disease mapping function to visualize patterns of regional
differences in medical events; and (3) a disease-clustering function to distinguish the geographic area
where adverse outcomes occur more than expected among a group of people defined over a specific
time period. In this study, R 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria) and the
web application framework RShiny were used to implement these functions [15,16].

2.2. Standardized Databases: OMOP-CDM and GADM

The OMOP-CDM consists of a common structure of patient-level data, such as personal
characteristics (age, sex, and residence) and medical records (diagnoses, drugs prescribed, medical
procedures, lab tests and results, and self-reported medical history). The notation of “cohorts” is
often used in the OHDSI community: a concept commonly applied in observational studies using
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large-scale medical databases [17] and consists of patients who meet eligibility criteria related to a
baseline (e.g., a person prescribed with hypertension drugs). The OHDSI ecosystem is a harmonization
of these defined cohorts-based patient extraction, estimation/prediction methods of their medical
outcomes, and R packages that seamlessly support this process. Cohorts can be easily defined as a
phenotype via ATLAS, which is an integrated web-based and open-source software platform [18].
In addition, the cohort extraction codes defined by ATLAS are efficient and consistent because they can
be transferred to other sites in a consensual format, such as various database management system
queries or JavaScript Object Notation code [19].

GADM is a spatial database of administrative areas (or administrative boundaries) of 254 countries.
The spatial ontology of GADM has a hierarchical system based on the administrative district
system in each country from level 1 through level 6. Table 1 presents examples of this system.
GADM provides high-resolution spatial information for all subdivision districts, including (1) spatial
polygons (administrative boundaries), (2) the area of the administrative district, and (3) coordinates of the
centroid. In this study, the GADM database, which contains geographic information for approximately
all the countries in the world, was used as a standard geographic information database and reduced the
time required by researchers to acquire the GIS data necessary for conducting spatial analysis.

Table 1. Examples of the subdivision of administrative districts in South Korea, the United States,
and the Netherlands provided by the Global Administrative Areas database.

South Korea United States Netherlands

Level 1: nation South Korea United States Netherlands
Level 2: states Seoul Illinois South Holland

Level 3: county Gangnam-gu Springfield Rotterdam

2.3. Overview of the Process Model in AEGIS

AEGIS works as an end-user application of the OHDSI ecosystem. A common strategy used to
convert the medical data in the OMOP-CDM into spatial analysis data is to create cohorts of patients at
exposure risk (termed as the target cohort) and denoting a health outcome (termed as the outcome
cohort) as well as to select an index date for each patient. The patients in the target cohort are used as
the number of population in the study area (i.e., denominator). For each patient, the presence of the
outcome of interest is assessed by identifying the inclusion in the outcome cohort based on the index
date with respect to the risk observation period (termed as time-at-risk). In the OHDSI, cohorts are
typically defined independently of the remaining cohorts in this study, allowing their reuse.

The user accesses a database obtained using OMOP-CDM selects a target and outcome from a
cohort list defined and extracted from ATLAS and defines a time-at-risk. The demographic information
of all the patients in the target cohort (including the sex, age on the index date, and the coordinates of
the district at which they reside) was obtained from the person and location tables in OMOP-CDM.
Further, the number of target patients and patients with medical outcomes are aggregated by region,
sex, and age group and delivered to R based on the target/outcome cohort and time-at-risk.

One of the features of GADM is that the administrative information is hierarchical. Thus,
the number of patients in the target cohort and the number of patients who have a medical outcome are
assigned to the lowest hierarchical area of GADM corresponding to the coordinates of their residential
area, and diverse spatial statistics are calculated for different administration levels. Figure 1 depicts
an overview of AEGIS that performs spatial epidemiology analysis using an observational health
database converted to the OMOP-CDM.



Int. J. Environ. Res. Public Health 2020, 17, 7824 4 of 14

Int. J. Environ. Res. Public Health 2020, 17, x 4 of 14 

 

 
Figure 1. Illustration of the manner in which AEGIS based on the homogeneous structure of OMOP-
CDM performs spatial epidemiology analyses. AEGIS, Application of Epidemiological Geographic 
Information System; OMOP-CDM, Observational Medical Outcomes Partnership-Common Data 
Model. 
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Disease mapping is preferred for performing public health surveillance because it allows us to 
explain the spatial trend associated with the high or low disease incidence, identifying areas with 
unusually high risk concentrations, and formulating etiology hypotheses. AEGIS maps the risk of 
diseases in the form of a choropleth map, with the number of patients in the user-defined target 
cohort, standardized incidence ratio (SIRs), proportion, and Bayesian disease mapping models 
(Besag–York–Mollié) [4,20]. Disease risk is estimated for each administrative subdivision divided by 
the observed value versus the expected value at risk area 𝑖 = 1 ⋯ 𝑁. The expected counts used to 
estimate disease risk in each study area are calculated on the basis of the population demographics 
of the regions. Specifically, 

E =  r(ୱ)𝑛,୫
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where r(ୱ)  is the rate in stratum 𝑗  in case of the incidence rate on the indirect standardized 
population with respect to the age and sex of all the patients included in the target cohort, and 𝑛 is 
the number of target patients in stratum 𝑗  of the administrative districts. In areas with small 
populations, proportions or SIRs can be very considerably and cannot be reliably reported owing to 
insufficient sample size. Conversely, Bayesian disease mapping models are preferred for obtaining 
improved local estimates in areas in which there is insufficient information to estimate because 

Figure 1. Illustration of the manner in which AEGIS based on the homogeneous structure of OMOP-
CDM performs spatial epidemiology analyses. AEGIS, Application of Epidemiological Geographic
Information System; OMOP-CDM, Observational Medical Outcomes Partnership-Common Data Model.

2.4. Spatial Statistics

Disease mapping is preferred for performing public health surveillance because it allows us
to explain the spatial trend associated with the high or low disease incidence, identifying areas
with unusually high risk concentrations, and formulating etiology hypotheses. AEGIS maps the
risk of diseases in the form of a choropleth map, with the number of patients in the user-defined
target cohort, standardized incidence ratio (SIRs), proportion, and Bayesian disease mapping models
(Besag–York–Mollié) [4,20]. Disease risk is estimated for each administrative subdivision divided by
the observed value versus the expected value at risk area i = 1 · · ·N. The expected counts used to
estimate disease risk in each study area are calculated on the basis of the population demographics of
the regions. Specifically,

Ei =
m∑

j=1

r(s)j n j, (1)

where r(s)j is the rate in stratum j in case of the incidence rate on the indirect standardized population
with respect to the age and sex of all the patients included in the target cohort, and n j is the number of
target patients in stratum j of the administrative districts. In areas with small populations, proportions
or SIRs can be very considerably and cannot be reliably reported owing to insufficient sample size.
Conversely, Bayesian disease mapping models are preferred for obtaining improved local estimates in
areas in which there is insufficient information to estimate because covariates can be incorporated by
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borrowing information from the surrounding area, i.e., the area bordering the area [4]. The general
model for Bayesian disease mapping is expressed as follows:

Yi ∼ Poisson(Eiλi), i = 1, · · ·N,
log(λi) = Xiβ+ Ui,
Ui ∼ BYM

(
σ2

1, σ2
2

)
,

(2)

where Xi are covariates, Ui is a spatial random effect. σ2
1 is a spatially structured variance parameter

and σ2
2 is a spatially independent variance. Additionally, AEGIS provides adjusted regional incidence

with user-defined covariates. We used the R-INLA package for Bayesian calculations for small-area
estimation [20].

AEGIS also uses spatial scan statistics for detecting statistically significant disease clusters [6].
This process expands the myriad of circular scan windows in the area of interest and scans whether the
outcome occurrence is more focused when compared with the outside window. For the clustering
results, a p-value of <0.05 was considered to be statistically significant. AEGIS presents uncertainty of
estimates as 95% confidence intervals (SIRs, and proportion) or credible intervals (Bayesian disease
mapping model). Comprehensive information on the statistical process used here is provided in the
Supplementary Materials Methods S1.

2.5. Data Sources

The two observational health data sources from South Korea and the United States were analyzed.
National Health Insurance Service–National Sample Cohort (NHIS-NSC) is a representative cohort
of South Korea, which includes longitudinal observational health data for a population of 1 million
randomly sampled patients from 2002 to 2013 [21]. The NHIS-NSC includes variables that identify
the characteristics of the individual, such as age, sex, income status, residential area, birth, and death.
The medical treatment data include information on the medical bill, such as diagnosis (according to the
ICD-10 diagnostic codes), prescription, procedure, and device that the healthcare provider has claimed.

Another data source used was the Data Entrepreneurs’ Synthetic Public Use File (DE-SynPUF)
database. This database published by the Centers for Medicare Service (CMS) is a synthetic database
of 5% of the US population from 2008 to 2010 based on the real Medicare claim data. The conversion
process of the databases into OMOP-CDM is available at the official GitHub of OHDSI [22,23].

This study was approved and informed consent waived by the Ajou University Hospital
Institutional Review Board (AJIRB-MED-EXP-18-303). All methods of this study were performed in
accordance with the relevant guidelines and regulations. The study complied with the tenets of the
Declaration of Helsinki.

2.6. Code Availability

All source codes for AEGIS are available at the OHDSI GitHub repository [24].

2.7. Data Availability

The data that support the findings of this study are available from NHIS and CMS [25,26]. To gain
access to NHIS-NSC data, a completed application form, a research proposal, and the applicant’s
institutional review board (IRB) approval document should be submitted to and reviewed by the
Review Committee of Research Support in NHIS.

2.8. Applicability of AEGIS

For proof-of-concept, two spatial studies have been designed in South Korea and the United States
with respect to the (1) geographical variation of major types of cancers and (2) identification of the
endemic area of malaria. Cancer is a major non-communicable chronic disease and a leading cause
of death, and its socioeconomic burden is continuously increasing [27–29]. Assessing the regional
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heterogeneity with respect to the incidence and prognosis of cancer is important to improve the public
health. Malaria is another disease that is globally raising concerns with respect to public health. It is
well-known that malaria exhibits an extremely distinctive regional distribution because it is transmitted
by regional mosquitoes [30,31].

The target cohorts were defined as the whole population in the database, and the outcome cohort
included patients with major cancers or malaria. Overall, the following seven major cancers were
classified by using the International Classification of Diseases, 10th Revision (ICD-10) diagnostic codes
for analysis of the 5-year periods of 2004–2008 and 2009–2013: stomach (C16), colorectal (C18–C20),
liver (C22), lung (C33–C34), breast (C50), prostate (C61), and thyroid (C73). Additionally, the spatial
distribution of 5-year mortality in patients with incident cancers between 2004 and 2008 was described.
Malaria in this study was defined between 2008 and 2010 according to the ICD-10: B50–B53.

In the study area, the incidence and mortality rates of the disease were estimated using the Bayesian
disease mapping model, taking into account the small areas with insufficient samples. In addition,
scan statistics were used to identify the geospatial clusters of the hot spots after adjustment for age
and sex. The output of AEGIS, a choropleth map, identifies geographical changes and trends in major
cancer incidence and mortality rates and identifies regions where malaria patients are concentrated
in Korea and the United States. In this regard, Moran’s I statistic was calculated to evaluate local
heterogeneity. Moran’s I represents the overall spatial autocorrelation of the area covered by the study.
The values range from −1 (indicating dispersed distribution) to 1 (perfect clustering). A value of zero
indicates no autocorrelation [3].

Since the United States is one of the countries where malaria is not endemic or is no longer being
transmitted [30], it can lead to the failure to detect statistically significant clusters. These results cannot
be considered suitable for the verification of AEGIS. Therefore, additional analysis was conducted to
further compare the regional distribution of hospitalizations due to heart disease previously published
from the United States Centers for Disease Control and Prevention and to detect clusters in the
results. We studied the following 6 outcomes of interest: stroke, acute myocardial infarction, cardiac
dysrhythmia, coronary heart disease, heart failure, and heart disease [32].

2.9. Verification of Methodological Quality of AEGIS

To validate the spatial analytical function of AEGIS, outputs were compared with relevant
published reports and studies. First, we compared the annual national incidence (cases per
100,000 persons) of seven major cancers (stomach, colorectal, liver, lung, breast, prostate, and thyroid)
in Korea calculated by using AEGIS with the data reported by Statistics Korea [33] and determined
whether it overlapped within the 95% credible interval. The Korea Central Cancer Registry is a
database that collects nationwide hospital-based cancer incidence data since 1980 and annually
provides incidence, survival, and prevalence statistics [34]. To assess the credibility of the clustering
findings generated from AEGIS, the geographical cluster of malaria in South Korea was compared
with that of the previously published studies [35–37].

3. Results

3.1. Graphical User Interface of AEGIS

The AEGIS graphical user interface is classified into four functional panels (Figure 2, Supplementary
Materials Information S1). The database connection panel features an input box for entering the
server information to connect with the CDM database. The option buttons in the cohorts panel are
used for handling specific data (i.e., age and gender adjustment, time at risk, and country selection),
and the output for displaying the results table is provided. Finally, the disease mapping and cluster
panels provide option boxes for selecting analytical methods and an input box for entering parameters.
The output space is utilized to visualize the analytical results. The output of the disease map
provides interactive panning and zooming as well as clicking on the administrative polygon to supply
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information, such as the area name, target/outcome count, and risk of disease with 95% confidence or
credible interval. The source code is available at the official GitHub of OHDSI [24], which provides
free access and encourages user contributions.

Int. J. Environ. Res. Public Health 2020, 17, x 7 of 14 

 

95% confidence or credible interval. The source code is available at the official GitHub of OHDSI [24], 
which provides free access and encourages user contributions. 

 
Figure 2. Graphical user interface of AEGIS. Four function tabs (red box), setting panel (green box), 
and table and map outputs (blue box). AEGIS, Application of Epidemiological Geographic 
Information System. 

3.2. Geographical Distribution of Major Cancers 

Table 2 shows the statistical significance of Moran’s I calculations for the incidence of major 
cancers, including liver, lung, stomach, thyroid, breast, and prostate (positive values for Moran’s I; 
all p-values <0.05), but not statistically significant in the colorectal and breast cancer. Figure 3 shows 
the geographic variation in the incidence of female liver cancer from 2009 to 2013, the cancer with the 
highest Moran’s I value (0.44; p < 0.001). The incidence rate of female liver cancer was typically higher 
on the southwest coast and southeast inland. 

In the United States, Vermont (=614.98 [429.23–949.51]) was the region with the highest incidence 
of female liver cancer per 100,000 women per year, followed by Illinois (=607 [477.39–774.78]) and 
Kentucky (=595 [432.02–851.66]) (Figure 3). In addition, Texas (=580 [471.01–716.27]) in the southern 
region also had a higher incidence of liver cancer in women. Details of other cancers’ incidence and 
mortality rates are shown in Supplementary Materials Figure S1. 

Table 2 shows also that Moran’s I calculated to identify regional disparities in major cancer 
mortalities was not statistically significant (including colorectal, liver [only women], lung [only men], 
stomach, breast, and prostate cancer; all p-values ≥0.05). The difference in the incidence of lung cancer 
between women and men (Moran’s I, −0.18; p < 0.001) and men (Moran’s I, −0.05; p < 0.001) was 
statistically significant, but Moran’s I was a negative value. 

All cancer incidences reported by Statistics Korea [33] are within the 95% credible interval range 
of all cancer incidences estimated by AEGIS (Table 3). The increasing or decreasing temporal trends 
in the incidences of cancers assessed by AEGIS were also similar to those of previous reports 
(Supplementary Materials Figure S2). Further analysis was performed by comparing with another 
publication [38] with respect to the national major cancer incidence during the same period in Korea 
to denote that the AEGIS analysis results are robust (Supplementary Materials Table S1). 
  

Figure 2. Graphical user interface of AEGIS. Four function tabs (red box), setting panel (green
box), and table and map outputs (blue box). AEGIS, Application of Epidemiological Geographic
Information System. (A) DB connection: A panel to set the server address, username, password,
database management system, and database schema to configure the OMOP-CDM server connection;
(B) Cohorts: Select user parameters for processing specific data, such as target/outcome cohort, age and
gender adjustment, time at risk and country; (C) Disease mapping: Output disease mapping results
based on user parameters designed in the Cohorts panel; (D) Visualize the results according to the
selected clustering method.

3.2. Geographical Distribution of Major Cancers

Table 2 shows the statistical significance of Moran’s I calculations for the incidence of major
cancers, including liver, lung, stomach, thyroid, breast, and prostate (positive values for Moran’s I;
all p-values <0.05), but not statistically significant in the colorectal and breast cancer. Figure 3 shows
the geographic variation in the incidence of female liver cancer from 2009 to 2013, the cancer with the
highest Moran’s I value (0.44; p < 0.001). The incidence rate of female liver cancer was typically higher
on the southwest coast and southeast inland.

In the United States, Vermont (=614.98 [429.23–949.51]) was the region with the highest incidence
of female liver cancer per 100,000 women per year, followed by Illinois (=607 [477.39–774.78]) and
Kentucky (=595 [432.02–851.66]) (Figure 3). In addition, Texas (=580 [471.01–716.27]) in the southern
region also had a higher incidence of liver cancer in women. Details of other cancers’ incidence and
mortality rates are shown in Supplementary Materials Figure S1.

Table 2 shows also that Moran’s I calculated to identify regional disparities in major cancer
mortalities was not statistically significant (including colorectal, liver [only women], lung [only men],
stomach, breast, and prostate cancer; all p-values ≥0.05). The difference in the incidence of lung cancer
between women and men (Moran’s I, −0.18; p < 0.001) and men (Moran’s I, −0.05; p < 0.001) was
statistically significant, but Moran’s I was a negative value.

All cancer incidences reported by Statistics Korea [33] are within the 95% credible interval range of
all cancer incidences estimated by AEGIS (Table 3). The increasing or decreasing temporal trends in the
incidences of cancers assessed by AEGIS were also similar to those of previous reports (Supplementary
Materials Figure S2). Further analysis was performed by comparing with another publication [38]
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with respect to the national major cancer incidence during the same period in Korea to denote that the
AEGIS analysis results are robust (Supplementary Materials Table S1).

Table 2. Results of Moran’s I statistical test for the incidence and mortality of cancers in South Korea.

Cancer Site

Incidence Mortality

2004–2008 2009–2013 2004–2008

Moran’s I p-Value Moran’s I p-Value Moran’s I p-Value

Colorectal
Men 0.08 0.17 0.05 0.23 −0.06 0.23

Women −0.01 0.95 0.03 0.56 −0.06 0.56

Liver
Men 0.37 <0.001 0.39 <0.001 −0.05 0.05

Women 0.42 <0.001 0.44 <0.001 −0.18 <0.001

Lung Men 0.34 <0.001 0.34 <0.001 −0.05 <0.001

Women 0.38 <0.001 0.40 <0.001 −0.08 0.58

Stomach
Men 0.33 <0.001 0.32 <0.001 −0.05 0.57

Women 0.40 <0.001 0.39 <0.001 −0.05 0.45

Thyroid Men 0.40 <0.001 0.40 <0.001 - -

Women 0.29 <0.001 0.30 <0.001 - -

Breast
Men - - - - - -

Women 0.36 <0.001 0.36 0.08 −0.09 0.05

Prostate
Men 0.36 <0.001 0.39 <0.001 −0.08 0.05

Women - - - - - -
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Table 3. Comparison of the estimated major cancer incidences (age adjusted) from AEGIS with the
findings of relevant published reports.

Cancer Site

National Incidences (Cases Per 100,000 Persons)

2004–2008 2009–2013

AEGIS Statistics Korea 1 AEGIS Statistics Korea 2

Colorectal
Men 47.2 (31.8–66.6) 47.6 61.8 (41.7–86.9) 69.5

Women 33.3 (22.2–47.2) 33.7 44.5 (29.1–64.4) 44.5
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Table 3. Cont.

Cancer Site

National Incidences (Cases Per 100,000 Persons)

2004–2008 2009–2013

AEGIS Statistics Korea 1 AEGIS Statistics Korea 2

Liver
Men 48.9 (31.3–72.3) 45.9 46.4 (32.6–63.8) 49.3

Women 17.4 (10.3–26.9) 15.4 18.5 (12.2–26.2) 17.4

Lung Men 59.6 (42–81.8) 51.7 62.9 (47.5–80.6) 61.5

Women 20.5 (13.5–28.9) 20.7 25.1 (13.6–41.4) 26.9

Stomach
Men 67.4 (47.8–91.8) 72.4 73.4 (52.5–99.2) 85.8

Women 33.6 (23.9–45.4) 35.7 34.1 (26.9–42) 41.6

Thyroid Men 8.6 (3.1–18.5) 9.5 24.8 (12.2–43.9) 28.3

Women 52.1 (29.6–83.8) 56.6 104.9 (65.8–156.9) 136.4

Breast
Men - - - -

Women 33.2 (23.3–45.0) 44.6 44.9 (26.1–70.9) 64.3

Prostate
Men 20.7 (11–34.6) 18.4 28.0 (15.3–45.9) 36.2

Women - - - -
1 2006 cancer incidence (statistics Korea); 2 2011 cancer incidence (statistics Korea).

3.3. Identification of Endemic Areas of Malaria

Malaria epidemics in South Korea are highly concentrated near the military demarcation line
(especially, in the northern areas), which forms the boundary with North Korea (Figure 4). As shown
in Figure 4, the primary cluster of malaria was detected in the GADM level 3 administrative area
of Paju-si (p < 0.001), and the secondary cluster was identified in the GADM level 3 administrative
areas of Gimpo-si and Goyang-si (p < 0.001). We found that AEGIS was able to describe geographic
distribution and identify the known primary cluster of malaria in case of Paju-si [35–37]. The main
reason for this phenomenon is consistent with the opinion that the infective mosquitoes of North Korea
flowed into South Korea through the western part of the military demarcation line [39,40]. Furthermore,
the incidence of malaria in North Korea was also the highest near the military demarcation line [30,37].
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Figure 4 denotes the results of identifying geographic clusters in the United States. The scan
statistics for identifying geographical clusters were the highest in Arizona but; the difference was not
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statistically significant (p = 0.06). The overall incidence of malaria infections in the United States is
extremely rare and not concentrated in certain areas. Most cases of malaria infections can be observed
among people who traveled to countries with an ongoing malaria epidemic rather than for endemic
reasons [41]. Therefore, regional incidence distribution mapping and cluster detection were performed
for the six outcomes of interest in the United States: stroke, acute myocardial infarction, cardiac
dysrhythmia, coronary heart disease, heart failure, and heart disease. The geographical distribution of
hospitalization rates was higher than in other regions in the southeastern region called the “stroke
belt” [42,43]. Statistically significant clusters were found for all heart disease, all strokes, cardiac
dysfunction, coronary heart disease, and heart failure (all p-values <0.05). As shown in Figure 5,
Kansas (=63.20 [55.27–71.62]) was the highest annual incidence of all heart disease per 1000 people,
and primary cluster including Nebraska, Missouri, and Oklahoma was identified, centering on Kansas
(p < 0.001). See Supplementary Materials Figure S3 for detailed information about the geographical
distribution of hospitalization due to heart disease in the United States.Int. J. Environ. Res. Public Health 2020, 17, x 10 of 14 
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4. Discussion

In this study, we developed an open-source software application named AEGIS that allows
investigators to explore the spatial distribution of user-defined medical events and identify geographic
clusters with unusually better or worse health outcomes according to the various regional granularities
based on global standardized geocode and an observational health database. In particular, the inherent
aspects of GIS are completely implemented in AEGIS to enable the inferring adjacency and computing
distance for small-area estimation and scan statistics. The GADM would have uniform and reliable
geographic information at common levels of resolution for virtually all countries, while observational
health databases converted to OMOP-CDM would have widely-accepted terminologies and taxonomies
accompanied using widespread compliance and contributions. The feasibility and reliability of AEGIS
were demonstrated in multiple proof-of-concept studies using databases from two countries with different
administrative districts. AEGIS generated accurate geographical distribution of the medical conditions
and outcomes when compared with the findings of previous reports. It was possible to easily identify
endemic areas of malaria and assess geospatial heterogeneity in five-year mortality rates of cancer patients.

Efforts such as geospatial open-source projects (e.g., Open GIS Consortium, Humanitarian
OpenStreetMap Team, and Health Atlas by Institute for Health Metrics and Evaluation), the GIS
software (mapping tools from international GIS companies), and research studies [20,44,45] that aimed
at improving public health have been made for decades. In particular, SpatialEpiApp reported by
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Moraga and STVCapp by Chao et al. have many similarities to AEGIS in supporting advanced spatial
modeling and mapping for health-related data [45–48]. In contrast, AEGIS is a series of processing models,
including the standardization of the global administrative geocodes for observational health databases
and modules to represent geographical patterns, such as epidemiological indicators and visualization,
and the application of spatial analysis methods based on open-source ecosystems. Since the AEGIS
was also developed based on standardized data structures and terminologies, it ensures reusability,
interoperability, and transparency of the research results. Validation of the AEGIS was conducted
comprehensively. The AEGIS-generated consistent reports on spatial distribution of major cancers when
compared with the incidences reported by Statistics Korea based on the National Cancer Registry [33].

The AEGIS allows public health investigators to monitor areas of unusual disease occurrence,
analyze areas in which health problems are concentrated, and visualize results without programming
skills for spatial epidemiology. From a geoscience perspective, AEGIS-generated figures and analyses
are common, but identifying regional differences in health outcomes and reducing regional health
disparities are important in promoting public health. The visual representation of the distribution of
county or even finer scales on the spatial trends of major cancer incidences enabled an investigation of
the social inequality as associated with outcomes. In an autocorrelation analysis to assess the regional
disparities in the incidence and mortality rates of major cancers, the incidence rate of liver cancer
among women was found to be highest between 2009 and 2013. This regional pattern of a high female
liver cancer incidence rate concentrated along the southwest coast and in the southeast inland areas
might be related to a similar regional pattern of well-known risk factors for liver cancer, such as heavy
alcohol intake, parasitic infections, or viral hepatitis, that were previously found to be high [49–51].
The geospatial distribution of five-year mortality rate among patients with major cancer was either
not autocorrelated or rather dispersed. This finding suggests that equitable healthcare services at the
national level were provided to those patients, which could be due to the high level of healthcare
accessibility and quality in South Korea [52]. In-depth assessments and additional studies should be
performed to authenticate this finding.

It is possible to establish standardization for incorporating administrative area-based materials and
to estimate the association between various environmental factors (e.g., air pollution and socioeconomic
and genetic factors) and occurrence of medical events, such as cancers, communicable diseases,
revascularization, and asthma-related hospitalizations. Furthermore, standardized environmental
factors can be used as covariates in the Bayesian disease mapping model supported by the AEGIS,
which indicates that it is straightforward to use them as a starting point for complex epidemiological
studies to evaluate and compare related environmental factors between diseases. All source codes
for the AEGIS are publicly available. Therefore, any data holder with observational health data in
the OMOP-CDM can freely use the AEGIS. To improve the AEGIS, its code can be modified using
suggestions of researchers from many fields, such as spatial epidemiology or OHDSI. To our knowledge,
the AEGIS is the first open-source software that allows flexible spatial analyzation and visualization of
user-defined medical cohorts based on a global standardized geocode and observational health database.

This study exhibits some limitations that should be addressed. First, observational health data
should be standardized to OMOP-CDM for use in AEGIS. However, the OHDSI community is expanding
rapidly, and collaborators have already converted many observational health databases into OMOP-CDM,
or there are literature and tools to facilitate this. Second, AEGIS does not provide latitude and longitude
coordinate-based analysis because we wished to protect sensitive personal information. Third, disease
surveillance through disease clustering can generate false alarms (false positives). Therefore, attention
is needed when interpreting whether the trends and clusters found are caused by deterministic and/or
randomly components. AEGIS provides a Bayesian mapping model to estimate adjusted regional risks
using user-defined covariates. Fourth, only Korean and United States data were used for the investigation
conducted in this study. However, the United States data used in this study are synthetic; therefore,
the results should be carefully interpreted. Thus, AEGIS should be validated further by using additional
real-world databases from other countries, including the United States.
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5. Conclusions

In summary, AEGIS is an interactive open-source software management system that allows
researchers to perform spatial analysis in epidemiology and achieve visualized results from
observational health databases in the OMOP-CDM. We demonstrated the applicability and
methodological quality validation of AEGIS across countries by using proof-of-concept studies.
AEGIS may expedite research on public health by providing quick insights into regional disparities in
medical conditions. AEGIS and its source codes are freely available at GitHub [24].

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/21/7824/s1,
Methods S1: Statistical method in AEGIS. Information S1: Interactive web application. Table S1: Comparison
of the estimated major cancer incidences (age adjusted) from AEGIS with the findings of relevant published
reports. Figure S1: County-level age-adjusted geographical variation in incidence and mortality of major cancers
in Korea. Figure S2: Comparison of GADM-level 2 major cancer age-standardized incidence rate from AEGIS and
major cancer age-standardized incidence rate from NCC in Korea. Figure S3: Disease mapping and clustering for
regional differences in hospitalization rates due to heart-related diseases per 1000 people in the United States from
2008 to 2010 (age and sex adjusted).
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