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Abstract: We evaluated new features from biosignals comprising diverse physiological response
information to predict the outcome of weaning from mechanical ventilation (MV). We enrolled
89 patients who were candidates for weaning from MV in the intensive care unit and collected
continuous biosignal data: electrocardiogram (ECG), respiratory impedance, photoplethysmogram
(PPG), arterial blood pressure, and ventilator parameters during a spontaneous breathing trial
(SBT). We compared the collected biosignal data’s variability between patients who successfully
discontinued MV (n = 67) and patients who did not (n = 22). To evaluate the usefulness of the
identified factors for predicting weaning success, we developed a machine learning model and
evaluated its performance by bootstrapping. The following markers were different between the
weaning success and failure groups: the ratio of standard deviations between the short-term and
long-term heart rate variability in a Poincaré plot, sample entropy of ECG and PPG, « values of
ECG, and respiratory impedance in the detrended fluctuation analysis. The area under the receiver
operating characteristic curve of the model was 0.81 (95% confidence interval: 0.70-0.92). This
combination of the biosignal data-based markers obtained during SBTs provides a promising tool to
assist clinicians in determining the optimal extubation time.

Keywords: weaning; prediction; mechanical ventilator; biosignal; machine learning; digital biomarker

1. Introduction

Attempting to wean critically ill patients from mechanical ventilation (MV) is crucial.
Reducing the duration of MV decreases ventilator-related pneumonia, muscle weakness,
length of stay in the intensive care unit (ICU), and health care costs [1-5]. However, prema-
ture weaning may result in harmful outcomes such as complications during reintubation,
deconditioning of the patient, an increased need for tracheostomy, and a potential increase
in mortality [6-12]. Therefore, identifying the precise time for weaning from MV is a
critical decision.

Although many predictive indices and clinical tools are already in use [1,13-22], >20%
of the patients who have fulfilled the classic weaning criteria require reintubation [14,23-25].
The predictive performance decreases in patients with multi-organ dysfunction, older age,
prolonged MV, and severe illness [26-31]. The lack of reliable weaning parameters is related
to the heterogeneity of critically ill patients and their ever-changing clinical courses [32-35].
The causes of weaning failure are not exclusively attributable to oxygenation or ventilation
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insufficiency; cardiac function, volume status, muscle deconditioning, and the presence
of delirium also affect weaning outcomes [9,23,36—40]. Most of the indices are based on
the clinical situation recorded at a single time point, although each patient’s oxygenation,
ventilation, hemodynamic, musculoskeletal, and mental statuses are often unstable and
vary over time.

In this study, we hypothesized that features extracted from biosignals collected during
the weaning process would provide better predictive information than the commonly used
rapid shallow breathing index (RSBI); specifically, biosignal-based features would include
more diverse physiological information regarding the patient’s status (i.e., information
not limited to the pulmonary system). This hypothesis has been supported by recent
studies, in which useful digital biomarkers were present in biosignal data [26,41-44].
These markers may predict or detect cardiovascular and other clinical events [45-47].
Electrocardiogram (ECG) data reflect heart status, and specific morphology of the arterial
blood pressure waveform could reflect the status of the cardiovascular system [48-52].
Photoplethysmogram (PPG) data are used to measure oxygen saturation and provide
information regarding oxygen transfer [53-56]. A healthy biosystem is characterized by
complexity and variability, and alterations in variability and reduced complexity are related
to pathological conditions [57-62]. For ventilator weaning, breathing pattern variability
analysis has been performed for the estimation of weaning readiness in many studies;
reductions in variability indices during a spontaneous breathing trial (SBT) were reportedly
associated with extubation failure [63-67].

Here, we proposed a biosignal-based weaning prediction approach, which would
continuously reflect the patient’s clinical and physiological progression over time. This
study aimed to compare the distribution of values of biosignal data between the weaning
success and failure groups during an SBT. It also aimed to evaluate the additional value of
the biosignal data for the prediction of extubation outcomes, compared with the commonly
used RSBI.

2. Materials and Methods

This retrospective study was conducted using anonymized data. The Institutional
Review Board of Ajou University Hospital approved the study (IRB No. AJIRB-MED-MDB-
20-090) and waived the requirement for informed consent.

2.1. Data Sources

We collected clinical and biosignal data from patients who were admitted to the
ICU and underwent MV at Ajou University Hospital, a tertiary teaching hospital in South
Korea, from January 2019 to November 2020. Clinical data obtained from electronic medical
records and biosignal data were collected using our custom biosignal collecting platform,
which we developed for research purposes [68]. We also collected ventilator parameters
directly from the ventilators following every SBT to accurately identify the breathing
patterns and their variability (Figure 1).

2.2. Study Population

Patients aged > 18 years who had undergone MV for at least 24 h and who fulfilled the
weaning criteria were included (Figure 2). Weaning criteria were applied according to our
institution’s ventilator weaning protocol, which was based on the guidelines developed by
the American College of Chest Physicians, the American Association for Respiratory Care,
and the American College of Critical Care Medicine, with reference to additional research
methods [1,10,69,70]. The weaning criteria were as follows: resolution or improvement
of the condition leading to intubation; hemodynamic stability, which was defined as
systolic blood pressure between 90 and 160 mmHg, and heart rate <140 beats/min with
low or no doses of vasopressors; stable neurological status (no deterioration in Glasgow
Coma Scale during the prior 24 h); respiratory stability (oxygen saturation >90% with
fraction of inspired oxygen [FiO,] < 0.4), respiratory rate < 35/min, spontaneous tidal
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volume >5 mL/kg; and intact cough and gag reflexes. Patients with a tracheostomy or a
do-not-reintubate order were excluded.

PHILIPS

Dash Board
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Biosignal
collecting system

HAMILTON-G5

e

— Biosignal data Ventilator parameters

1,339 1,459,638,276 | 63,190,755 1,202.0
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Figure 1. Biosignal data collecting and data analysis process. Biosignal data from patient monitor devices and parameters

from mechanical ventilators were collected via our biosignal collecting system. Collected data were analyzed retrospectively

to find out features for predicting weaning success.

All the patients underwent a 30-min SBT with <6 cm H,O pressure support ventilation
and positive end-expiratory pressure; the FiO, remained unchanged from the MV period
prior to the SBT. When the patients successfully passed the 30-min SBT, they were extubated
and provided with a high-flow nasal cannula or air entrainment mask for oxygen therapy.
Patients who did not tolerate the SBT were reconnected to a ventilator. The criteria for
failure to tolerate the SBT were agitation, anxiety, deterioration of consciousness, respiratory
rate > 35/min and/or use of accessory muscles, oxygen saturation by pulse oximetry <90%
with FiO, > 0.5, heart rate > 140/min or >20% increase from baseline, systolic blood
pressure <90 mmHg, or development of an arrhythmia.

2.3. Study Design

This study focused on the variability of the physiological responses to the following
abrupt changes in the external environment: support with MV, reduced ventilator support,
and increased respiratory demand because of the SBT. To compare the biosignal features be-
tween the weaning success and failure groups, we defined the two groups (as described be-
low), and then calculated the biosignal features representing those variabilities (Figure 2).
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Figure 2. Study overview. We selected biosignal-based features that showed differences between the weaning failure
and success groups. Their usefulness was evaluated by applying these features to predict weaning success, followed by
comparison with the pre-existing RSBI. ICU, intensive care unit; RSBI, rapid shallow breading index; SBT, spontaneous
breathing trial.
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Following values

We defined the weaning failure group as patients who failed to wean before extubation
and patients who were reintubated within 48 h following extubation. Failed extubation
was defined as reintubation within 48 h of extubation. Respiratory failure within 48 h
of extubation was defined as the occurrence of at least one of the following: respiratory
acidosis with pH <7.3 and partial pressure of carbon dioxide (PaCO,) >45 mmHg, oxygen
saturation <90% with FiO; >0.5, respiratory rate >35/min, deterioration of consciousness,
severe agitation, or clinical signs of respiratory fatigue. We defined the extubation success
group as patients free from MV for >48 h following extubation. Two pulmonologists (W.Y.C.
and J.E.P.) reviewed the clinical data of all the enrolled patients and confirmed whether the
patients were included in the case (success) or control (failure) groups.

2.4. Feature Extraction

To extract biosignal-based features, we used waveform data including ECG, PPG,
respiratory impedance, and invasive arterial blood pressure measurements, as well as
numerical measurements including heart rate, respiratory rate, and mean arterial pressure.
All the waveform data were down-sampled as 62.5 Hz to ensure that they have the same
data format and to reduce computational complexity in the analysis. We also collected
and used ventilator parameters for every breath from mechanical ventilators including
tidal volume, inspiration time, and the ratio of inspiratory and expiratory time during the
30-min SBT.

We calculated the features that represented the variability of time-series data using
Poincaré plots, sample entropy (SampEn), and detrended fluctuation analysis in the middle
10 min of the SBT.

A Poincaré plot is a scatter plot of the current value (e.g., the R-R interval in an
ECG) against the immediately preceding value (Figure 3A). Standard deviation 1 (SD1)
in the plot is defined as the level of deviation against the line of identity (y = x). SD1
represents how consecutive values differ from previous values (short-term variability).
SD2 is calculated as the level of deviation together with the line of identity (i.e., how
all values are distributed; long-term variability). The ratio of SD1 and SD2 (SD1/SD2)
represents the level of short-term variability, compared with long-term variability.

(B) (€)
SD2 Higher sample entropy N 9
a
W S
//\’\/\/\—\/\/\A/\f/\,J\/\V | «
3 )
[$)
=}
(o (]
M *
v
— Lower sample entropy —
Preceding values Time window

Figure 3. Methods used for the feature extraction process. (A) Poincaré plot, (B) Sample entropy, and (C) Detrended

fluctuation analysis. All three approaches evaluate the level of variability in time-series data. For numerical values, the

Poincaré plot method was used; for waveform data, sample entropy and detrended fluctuation analysis methods were used.

SampEn is an index that represents the level of complexity of a particular dataset
(Figure 3B). It calculates the probability that the same findings are observed in different
time windows; the calculated value is then used as input in a negative logarithm. A
low SampEn value indicates a high level of regularity; a high SampEn value indicates an
irregular state.
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Detrended fluctuation analysis is used to quantify the level of fractal-like correlation of
the time-series data. When the patterns observed in some time windows are also observed
in the larger or smaller time windows, this is regarded as fractal-like correlation. An & = 0.5
indicates random data with no pattern, while « > 0.5 indicates data with fractal correlation.
Usually, two indicators are calculated, «1 and «2, indicating short- and long-term fractal-
like correlation (fluctuation) (Figure 3C).

2.5. Statistical Analyses

Categorical variables are presented as numbers and percentages. Continuous variables
are summarized as means and standard deviations. To compare categorical variables, the
X2 test or Fisher’s exact test was used. Mann-Whitney U test was used for continuous
variables. In the comparison of the baseline characteristics between the success and failure
group, p < 0.05 was considered significant. In the comparison of the biosignal-based
features, p < 0.1 was used to include more diverse variables as input values for the machine
learning model for weaning prediction. However, to control the false discovery rate owing
to multiple comparisons, we used the Benjamini and Hochberg correction. Thresholds
for statistical significance o,q; were adjusted as «*i/m, where « = 0.1, m is the number of
comparisons, and i is the position in an ordered p-value list from smallest to largest (1, ...,
m). Statistical significance was defined as p < a,g;.

2.6. Development of the Machine Learning Model

To evaluate whether the composite of biosignal-based features is useful to predict the
probability of weaning success, we developed a machine learning model using biosignal
features. We included not only biosignal features that showed significant differences but
also features that showed near significant differences between the case and control groups,
to include all variables that could have additional information in weaning prediction.
The RSBI value, which is currently used for weaning prediction, was also included in
the input values.

A Random Forest classifier was used to predict the weaning failure. The Random For-
est classifier is consisted of series of independent decision trees. Each tree has a hierarchical
decision rules, and it separates input data into N(f) leaves € [Nt 1, ..., Nyn(yl, where t € (1,
..., T) means each tree and N;; contains a probability of weaning success 7t; € [0,1]. The
Random Forest model collects all prediction from each of decision models, and it returns
the majority of votes as final output. The character of the classifier can be determined by
hyperparameters. In this study, the following hyperparameters were set: the function to
measure the quality of a split was “Gini Impurity,” the number of estimators was 50, the
minimum number of samples required to constitute a leaf node was one, and the minimum
number of samples required to split an internal node was two. The Gini Impurity was
calculated using the following formula:

C

G=) p(i)x(1-p()

i=1

where C is the number of total classes and p(i) is the probability of selecting data with class
i (weaning success or failure). Each internal node was trained to have best splits the space
of training data to lead to the greatest reduction in Gini Impurity defined above.

We determined the relative importance of the features after training. The feature
importance of a Random Forest indicates the degree to which the overall classification
impurity is reduced if the feature is used in the model. To calculate importance of each
feature, the importance of each node was calculated using the following formula:

nij = wjGj — Wiepy(j) Glefr() — Wright(j) Gright j)

where ni;, w;, Gj, left(j), right(j) means the importance of node j, weighted number of
samples reaching node j (N;/N), the impurity value of node j, child node from left split on
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node j, child node from right split on node j, respectively. Further, the importance of each
feature was then calculated using the following formula:

ZjEnodes split on feature i 1]
Zkeall nodes nik

fii =

where fi; and n; means the importance of feature i and node j. Then fi; was normalized
by dividing by the sum of all feature importance value to make all fi; values be ranged
between 0 and 1. Finally, the averaged fi; over all trees was used to evaluate fi; at the
random forest level.

Performance of the model was measured by sensitivity, specificity, positive predictive
value, negative predictive value, F1 score, and area under the receiver operating character-
istic (AUROC). To compare the usefulness of our model with the existing RSBI alone, the
weaning prediction performance of the RSBI was evaluated using the same performance
measures. The dataset was randomly separated into training and test datasets in the ratio
of 7:3. The average performance and 95% confidence intervals of performance indices were
calculated using bootstrap resampling procedures with 1000 iterations. For performance
comparison, we also conducted multiple logistic regression with the same process.

2.7. Software Used in the Study

Acquisition software (Hamilton Medical Ventilator data logger version 5.0, Bonaduz,
Switzerland) was used to obtain the numerical data, such as tidal volume, inspiratory
time, and the ratio of inspiratory and expiratory time from the mechanical ventilators,
during the trial. Microsoft SQL Server and Python were used for data management and
statistical analyses.

3. Results

During the study period, 350 patients underwent MV in the ICU. Of these 350 patients,
106 fulfilled the inclusion criteria, 17 were excluded due to missing biosignal or ventilator
data, and 89 were finally included in the study (Figure 2). Among the 89 included patients,
67 successfully discontinued MV and were able to breath by themselves without the aid of
a ventilator for at least 48 h following extubation (case group); and 22 patients failed and
resumed MV within 48 h (control group). The baseline characteristics of the two groups are
provided in Table 1. They were similar in terms of age, sex, main cause of ICU admission,
APACHE II score, and length of MV before the SBT. In particular, in the case of pneumonia,
which accounts for a large proportion of the reasons for ICU admission, there was no
difference between the two groups in the comparison according to the type of pneumonia
and the causative pathogen.

Table 1. Baseline characteristics of the study population according to the outcome of weaning.

Success .
Characteristics (; 0=ta819) Group Falt;ri (Z;zr;) up p Value
(N =67)
Age, mean & SD, year 69.3 +14.3 69.8 £ 13.5 67.59 +16.5 0.533
Sex (males/females), n 54/35 40/27 14/8 0.743
Body weight, mean + SD, kg 59.2 +11.7 59.6 £ 12.2 579 £10.3 0.568
Height, mean + SD, cm 1645+ 9.6 163.8 £ 10.0 166.8 £+ 8.0 0.193
BMI, mean + SD, kg/m? 219+42 223 +43 20.8 +£3.7 0.152
Main cause of ICU admission, 1(%) 0.897
Pneumonia 59 (66.3) 45 (67.2) 14 (63.6)
COPD/ Asthma AE 8 (9.0) 6 (9.0) 2(9.1)
Pulmonary hemorrhage 4 (4.5) 3(4.5) 1(4.5)
Sepsis 3(34) 3(4.5) 0(0)
Gastrointestinal bleeding 1(1.1) 1(1.5) 0(0)
Neurologic disease 2(2.2) 1(1.5) 1(4.5)
Pulmonary edema 7(7.9) 5(7.5) 2(9.1)
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Table 1. Cont.

Success .
Characteristics (J(itzlg) Group Fali;re;(z;;;) up p Value
(N =67)
Others 5(5.6) 3(4.5) 2(9.1)
Comorbidity, n(%)
Cardiovascular disease 52 (58.4) 40 (59.7) 12 (54.5) 0.670
Diabetes mellitus 25 (28.1) 20 (29.9) 5(22.7) 0.519
Chronic obstructive pulmonary 16 (18.0) 11 (16.4) 5 (22.7) 0.530
disease
Neurological disease 24 (27.0) 20 (29.9) 4(18.2) 0.285
Malignancy 18 (20.2) 14 (20.9) 4(18.2) >0.99
Renal disease 10 (11.2) 9 (13.4) 1(4.5) 0.440
Liver disease 4 (4.5) 4 (6.0) 0(0) 0.568
APACHE II score, mean + SD 21.8 £8.1 223+8.3 202+7.3 0.288
Length of mechanical ventilation
before SBT, mean + SD, d 73453 70+55 81+47 0.393
Duration of MV > 72 h, n(%) 68 (76.4) 50 (74.6) 18 (81.8) 0.491
Use of neuromuscular blocker, 1(%) 18 (20.2) 13 (19.4) 5(22.7) 0.764
Excess secretion, 1(%) 9 (10.1) 6 (9.0) 3(13.6) 0.684
Arterial blood gas ananlysis, mean +
SD
PaO,, mmHg 107.8 £ 34.8 108.0 £ 31.4 106.9 + 44.4 0.891
PaCO,, mmHg 38.7 £ 11.0 37.6 £104 419+ 124 0.116
PaO, /FiO, ratio 317.3 +102.3 320.5+91.4 307.3 +132.1 0.666
Upper airway disorder after
extubation, (%) 2(2.2) 2(3) 0(0) >0.99
Prior failed weaning attempt, 1(%) 15 (16.9) 9 (13.4) 6 (27.3) 0.187

Data are presented as mean =+ standard deviation or number (%). BMI, body mass index; ICU, intensive care unit; COPD, chronic
obstructive pulmonary disease; AE, acute exacerbation; APACHE, acute physiology and chronic health evaluation; SBT, spontaneous
breathing trial; MV, mechanical ventilation; PaO,, partial pressure of oxygen in arterial blood; PaCO,, partial pressure of carbon dioxide;
FiO; ratio, fraction of inspired oxygen.

Among the biosignal-based features, we could detect significant differences between
the two groups in the following features (Table 2): SampEns in ECG and PPG. We also
included the additional following variables that showed near significant level of difference
for further amodel development): ratio of SD2 and SD1 in heart rate; al values in ECG and
respiratory impedance, a2 values and al/a2 in ECG.

Table 2. Univariate analysis results of biosignal features between the weaning success and failure groups.

Items Variability Index Success Group Failure Group p Value Kadj ¥
Heart rate SD1 (mean + SD) 2.52 (1.45) 2.17 (1.15) 0.316 0.035
SD2 (mean =+ SD) 6.74 (4.56) 8.63 (6.98) 0.741 0.076

SD1/SD2 (mean =+ SD) 0.43 (0.18) 0.32 (0.13) 0.015* 0.009

Respiratory rate SD1 (mean + SD) 2.76 (1.22) 1.77 (0.49) 0.617 0.068
SD2 (mean =+ SD) 2.94 (1.25) 3.08 (1.25) 0.561 0.059

SD1/SD2 (mean =+ SD) 0.62 (0.16) 0.65 (0.24) 0.592 0.065

Tidal volume SD1 (mean + SD) 52.58 (32.96) 27.64 (10.9) 0.237 0.029
SD2 (mean =+ SD) 72.90 (40.18) 45.40 (9.86) 0.747 0.079

SD1/SD2 (mean =+ SD) 0.72 (0.2) 0.62 (0.19) 0.496 0.053

IE ratio SDI (mean =+ SD) 61.23 (47.58) 164.57 (297.75) 0.882 0.094
SD2 (mean =+ SD) 61.23 (47.58) 189.32 (268.39) 0.408 0.044

SD1/SD2 (mean =+ SD) 0.63 (0.22) 0.55 (0.23) 0.318 0.038

Inspiratory time SD1 (mean + SD) 96.20 (68.04) 79.98 (53.70) 0.750 0.082
SD2 (mean =+ SD) 146.79 (79.75) 156.47 (117.67) 0.567 0.062

SD1/SD2 (mean =+ SD) 0.66 (0.24) 0.58 (0.28) 0511 0.056




Int. J. Environ. Res. Public Health 2021, 18, 9229 90f17

Table 2. Cont.

Items Variability Index Success Group Failure Group p Value Xadj T
Mean ABP SD1 (mean + SD) 5.37 (4.58) 5.99 (9.42) 0.340 0.041
SD2 (mean = SD) 10.80 (6.09) 15.98 (23.12) 0.832 0.088
SD1/SD2 (mean =+ SD) 0.5 (0.21) 0.4 (0.17) 0.087 0.026
ECG SampEn (mean + SD) 2.04 (0.61) 2.50 (0.46) 0.005 ** 0.006
al (mean = SD) 1.29 (0.15) 1.22 (0.08) 0.033 * 0.021
a2 (mean =+ SD) 0.57 (0.23) 0.43 (0.20) 0.016 * 0.012
al/a2 (mean + SD) 2.83 (2.46) 3.47 (1.57) 0.026 * 0.018
Respiratory SampEn (mean + SD) 0.21 (0.05) 0.22 (0.05) 0413 0.047
impedance
al (mean + SD) 2.03 (0.04) 2.01 (0.03) 0.018 * 0.015
a2 (mean = SD) 1.11 (0.27) 1.07 (0.31) 0.719 0.074
al/a2 (mean + SD) 2.04 (1.11) 2.70 (3.64) 0.973 0.1
PPG SampEn (mean + SD) 0.14 (0.05) 0.18 (0.11) 0.002 ** 0.003
al (mean = SD) 1.96 (0.12) 1.91 (0.19) 0.062 0.024
a2 (mean =+ SD) 1.96 (0.12) 0.78 (0.49) 0.429 0.05
al/a2 (mean + SD) 5.61 (10.72) —2.15(29.37) 0.947 0.097
ABP SampEn (mean + SD) 0.36 (0.39) 0.43 (0.46) 0.247 0.032
al (mean =+ SD) 2.09 (0.01) 2.08 (0.02) 0.627 0.071
a2 (mean + SD) 1.83 (0.10) 1.82 (0.12) 0.775 0.085
al/a2 (mean + SD) 1.14 (0.07) 1.15 (0.08) 0.853 0.091

Data are presented as mean + standard deviation. IE ratio, inspiratory to expiratory time ratio; ABP, arterial blood pressure; ECG,
electrocardiogram; PPG, photoplethysmogram; SD1, standard deviations between short-term heart rate variability; SD2, standard
deviations between long-term heart rate variability; SampEn, sample entropy. * 0tadj is the adjusted statistically significant threshold o = 0.1
by multiple testing by Benjamini and Hochberg (BH) correction. ** Statistically significant variables after BH correction. * Statistically near
significant variables after BH correction.

When the RSBI value alone was used for weaning prediction, its AUROC was 0.58
(95% confidence interval: 0.44-0.71). When the biosignal-based features were combined
with RSBI for weaning prediction, the AUROC value increased to 0.81 (95% confidence
interval: 0.70-0.92). The performance comparison of the models (based on biosignals
with the RSBI score and based on RSBI alone) is shown in Table 3. The combined model
demonstrated improved specificity (+26%), accuracy (+4%), negative predictive value
(+18%), and F1 score (+23%), with a similar level of sensitivity. The details of model
performance are provided in Table 3 and Figure 4.

Table 3. Performance indices (accuracy, sensitivity, specificity, positive predictive value, negative predictive value,

and F-1 score).

Sensitivity Specificity Accuracy PPV NPV F-1 Score
RSBI (>105) 0.91 (0.87-0.96) 0.26 (0.13-0.38) 0.80 (0.75-0.84) 0.85 (0.83-0.88) 0.40 (0.20-0.61) 0.30 (0.17-0.44)
RSBI + biosignal
(Random Forest) 0.91 (0.85-0.97) 0.52 (0.36-0.69) 0.84 (0.79-0.89) 0.90 (0.87-0.93) 0.58 (0.40-0.76) 0.53 (0.40-0.66)
RSBI + biosignal
(Multiple 0.91 (0.86-0.97) 0.41 (0.25-0.57) 0.82 (0.78-0.87) 0.88 (0.85-0.91) 0.53 (0.33-0.73) 0.44 (0.30-0.58)
regression)

Mean values of areas under the curve with 95% confidence intervals. PPV, positive predictive value; NPV, negative predictive value; RSBI,
rapid shallow breathing index.

As shown in Figure 5, biosignal-based features selected in this study exhibited value
similar to the existing RSBI for predicting weaning success in the Random Forest model. In
particular, SD1/SD2 in heart rate, a1 in respiration impedance, and SampEn in PPG were
more valuable than RSBI
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Figure 4. Performance comparison between the model using RSBI alone and the model using
RSBI and biosignal-based features. After 1000 iterations of bootstrapping, the mean AUROC and 1
standard deviation of each group are shown as a solid line and shaded area.
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Figure 5. Feature importance in the Random Forest model to predict weaning success. All biosignal features were
demonstrated to have value similar to RSBI

4. Discussion

Our study successfully incorporated novel biosignal-based features into classic wean-
ing prediction tools to provide a more accurate marker for MV discontinuation. SD1/SD2 in
heart rate, SampEn in ECG, «1 in respiratory impedance, and SampEn in PPG were signifi-
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cant discriminants of MV weaning success. The addition of this panel of new parameters
to the RSBI yielded better predictive performance, compared with RSBI alone.

During the weaning process, we observed differences between the success and fail-
ure groups based on the biosignal features extracted from heart rate, ECG, respiratory
impedance, and PPG. In the analysis of numerical data, heart rate distribution using the
Poincaré plot method for patients with weaning failure showed reduced variability of mea-
sured parameters. A decrease in variability reportedly indicates reduced adaptive capacity
in a stressful environment (e.g., reduced ventilator support) and has been described in
several pathological conditions [71,72]. Heart rate variability (HRV) is the time interval
between consecutive heartbeats, and is a commonly used variable for predicting weaning
outcomes using biosignal data analysis. HRV is associated with the balance between
parasympathetic and sympathetic regulation, thermoregulation, baroreflexes, and respira-
tion; altered HRV is reportedly associated with failed weaning trials [46,73]. Huang et al.
reported that when analyzing HRV in the pre-SBT, SBT, and post-extubation periods, de-
creased HRV was significantly associated with SBT failure; the inability to increase HRV
following extubation was correlated with subsequent reintubation [74]. Seely et al. also
reported that alterations in the HRV during SBTs significantly correlated with weaning
failure [64]. The weaning process is associated with increased breathing effort; Seely et al.
suggested that the inability to tolerate the increased breathing effort in patients who were
not ready for extubation could be used to improve the prediction of failed extubation. In
our study, we used numerical values of heart rate per minute measured every second,
which would be difficult to compare directly using HRV. However, the increased variability
of the cardiovascular system to adapt to environmental changes is presumably through a
similar mechanism.

In analysis of the waveform data, patients who were successfully extubated had
lower complexities in the ECG, respiratory impedance, and PPG during the SBTs. We
presume that patients with weaning success exhibited better preservation of regularity
and reproducibility in biosignal features, compared with patients with weaning failure;
patients with weaning success presented low complexity and predictable features. In
contrast, the biological rhythms became more irregular and unpredictable in patients
who did not tolerate the weaning process in our study. Engoren et al. reported that the
weaning failure group showed increased irregularity in biosignal analysis of approximate
entropy of tidal volume, which reflects enhanced external inputs to the respiratory control
center; increased regularity in the weaning success group indicated a better adaptive
mechanism of an autonomous system [75]. El Khatib et al. reported that Kolmogorov
entropy and dimensions of the spontaneous breathing pattern were increased in patients
who failed weaning trials; they also suggested that complexity during the SBTs was
enhanced in patients with weaning failure [41]. In another study, Papaioannou et al.
assessed the respiratory pattern complexity in critically ill surgical patients during weaning
trials; they reported that patients with weaning failure exhibited significantly decreased
respiratory pattern complexity, reduced SampEn, and increased detrended fluctuation
analysis exponents, compared with patients with weaning success [76]. Discrepancies
in the results, compared with previous studies, are presumably associated with different
protocols for weaning and different patient characteristics. Papaioannou et al. compared
the before and after SBTs in both successful and unsuccessful groups. Our study directly
compared the biosignal features of the weaning success and failure groups. We suspect
that the success group showed predictable variability owing to control by the internal
regulatory system, while the failure group exhibited a more chaotic behavior since these
patients were unable to tolerate environmental changes.

In this study, we also analyzed the variability and complexity of respiratory rate, tidal
volume, arterial blood pressure, and inspiratory to expiratory time ratio (I:E ratio) over
time using the machine learning model; however, they failed to show any significant results
in our study.
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Respiratory rate and tidal volume are the main variables of RSBI, which is the most
coveted weaning predictor in the ICU so far, and their stability were expected to demon-
strate a significant role in the prediction of weaning success. Their limited role in our study
could be because once they are maintained under a certain value, the change over time
may have little significance. A ratio of respiratory rate over tidal volume (i.e., RSBI) under
105 is considered adequate for considering extubation in many critical care guidelines, and
if the value is maintained under 105, the stability should not be a major factor in weaning
success [77,78]. Moreover, since the values are included in the RSBI itself, the comparison
of these biosignals with RSBI would not incur any difference. Furthermore, in order to
collect the ventilator associated biosignals, we provided minimal ventilatory support until
extubation, instead of disconnecting MV during SBTs. This should have maintained stable
tidal volume to maintain the volume over the minimally required value to reduce the
predictive performance of the breathing pattern variability. According to Otaguro et al. res-
piratory rate and tidal volume were the least important weaning predictors in their study
comparing different machine learning models for successful extubation prediction [79].

Similar to heart rate, blood pressure reflects the patient’s cardiovascular reserve. Its
instability over time is more a matter of poor cardiovascular function or inadequate volume
status than the patient’s adaptation mechanism to decreasing ventilatory support. Before
selecting weaning candidates, we carefully achieved optimal volume control and checked
their sufficient cardiovascular function in order to protect patients from negative cardiovas-
cular events during the weaning procedure. Inspiratory time to expiratory time ratio in
self-breathing patients is a function of respiratory system resistance [80]. Therefore, before
undergoing the weaning procedure, it is fundamental to control pathologic conditions,
which can increase the bronchial resistance, such as bronchial spasm or exacerbation of
airway disease. This conservative approach is endowed with a low discriminating value to
inspiratory time complexity as well as I:E ratio variability.

The prediction of weaning outcome improved with the combination of biosignal
markers and RSBI, compared with RSBI alone. RSBI is derived from the respiratory
frequency divided by tidal volume, and thus directly represents breathing characteristics.
Furthermore, RSBI is the most used index for the estimation of weaning readiness during
an SBT [77,78]. If the patient has adequate tidal volume with deep and regular breathing,
the RSBI will be low, which suggests weaning success. However, the purposes of breathing
are to successfully inhale air into the lungs and transfer oxygen to each tissue in the body.
Breathing quality may be affected by many diverse variables, including the cardiovascular
system, autonomic nervous system, and musculoskeletal capacity [81,82]. In this study, the
prediction model that integrated RSBI and biosignal data demonstrated higher values of
performance indices, compared with RSBI alone.

Previous studies have suggested that clinically important information remained undis-
covered in the biosignal data [83,84]. In the ECG waveform data, atrial fibrillation could be
detected regardless of whether the ECG waveforms maintained normal sinus rhythm [48].
Normal sinus rhythm (presumed to indicate completely normal status) is expected to in-
clude information for mortality prediction [49]. Morphological changes of P waves suggest
an increased risk of hemorrhage in patients with ischemic stroke [50]. ECG waveform
information is also useful when screening for cardiac contractile dysfunction [51,85]. Our
results in this study suggest that biosignal data (e.g., ECG, PPG, and arterial blood pressure)
provide useful information, specifically regarding whether patients attempting an SBT
have sufficient ability to breath without MV assistance.

Incorporation of biosignal-based features when monitoring patients during the wean-
ing process enables physicians to make rapid clinical decisions based on real-time, con-
tinuous medical information [86-88]. Continuous monitoring of biosignal information,
such as ECG, respiratory rate, PPG, and arterial blood pressure is routine practice in ICU
care. Thus, biosignal-based measurements are easily accessible and would be helpful when
assessing patients attempting SBTs. Our model did not use any clinical information other
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than the biosignal data obtained from the patient monitoring devices. Therefore, our model
can easily be used in the ICU setting.

A limitation of this study was its single-center design (i.e., single ICU at a single
institute). We did not include patients admitted for surgical or trauma-related ICU care,
owing to their ventilator use characteristics. Post-surgical use of MV in the ICU rarely
causes weaning failure associated with a primary problem in the pulmonary system. We
included only patients who received respiratory support with MV because of respiratory
problems, while excluding other ICU patients. The medical records of all enrolled patients
were reviewed by two board-certified pulmonologists. Owing to this process, we found
no significant differences in the baseline characteristics between the weaning success and
failure groups.

The small number of patients was another limitation in this study, although we
identified meaningful biosignal-based digital biomarkers. Previous studies discovered
novel biosignal-based digital biomarkers using deep learning [41,42,64,75]. Current deep
learning techniques can identify hidden patterns with large amounts of data; however, we
could not collect sufficient data to support a deep learning model. We presume that further
valuable information for determining the possibility of weaning success can be discovered
when more data are obtained, supporting the development of a deep learning model.

5. Conclusions

MYV weaning failure is usually multifactorial; thus, the weaning parameters that assess
a single physiological function may have limited predictive accuracy. In the weaning
process, changes in biosignal markers can serve as predictive indicators of each patient’s
extubation outcome. These changes offer a noninvasive and valuable tool to character-
ize cardiorespiratory function and autonomic system interactions. We identified a new
biosignal-based combination of markers to determine the possibility of weaning success.
By using these digital biomarkers, clinicians can select the appropriate earliest weaning
time, which could decrease the risks of both unnecessarily prolonged ventilator support
and premature weaning. Therefore, new marker-based biosignal data obtained during SBTs
provide a promising tool to assist clinicians in determining the optimal extubation time for
the treatment of critically ill patients undergoing ventilator care. However, confirmation of
the model generalizability warrants additional studies in other institutions to obtain larger
numbers of patients.
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