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Objectives: The aim of this study was to characterize the benefits of converting Electronic Medical Records (EMRs) to a 
common data model (CDM) and to assess the potential of CDM-converted data to rapidly generate insights for benefit-
risk assessments in post-market regulatory evaluation and decisions. Methods: EMRs from January 2013 to December 2016 
were mapped onto the Observational Medical Outcomes Partnership-CDM (OMOP-CDM) schema. Vocabulary mappings 
were applied to convert source data values into OMOP-CDM-endorsed terminologies. Existing analytic codes used in a prior 
OMOP-CDM drug utilization study were modified to conduct an illustrative analysis of oral anticoagulants used for atrial 
fibrillation in Singapore and South Korea, resembling a typical benefit-risk assessment. A novel visualization is proposed to 
represent the comparative effectiveness, safety and utilization of the drugs. Results: Over 90% of records were mapped onto 
the OMOP-CDM. The CDM data structures and analytic code templates simplified the querying of data for the analysis. In 
total, 2,419 patients from Singapore and South Korea fulfilled the study criteria, the majority of whom were warfarin users. 
After 3 months of follow-up, differences in cumulative incidence of bleeding and thromboembolic events were observable via 
the proposed visualization, surfacing insights as to the agent of preference in a given clinical setting, which may meaningfully 
inform regulatory decision-making. Conclusions: While the structure of the OMOP-CDM and its accessory tools facilitate 
real-world data analysis, extending them to fulfil regulatory analytic purposes in the post-market setting, such as benefit-risk 
assessments, may require layering on additional analytic tools and visualization techniques.
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I. Introduction

The changing regulatory landscape of health products has 
led to an increasing interest in incorporating real-world evi-
dence (RWE) for regulatory decision-making [1]. Regulators 
are increasingly turning towards analytic frameworks and 
tools for evidence generation, using real-world data (RWD) 
to enhance their understanding of the benefits and risks of 
health products [2]. The key evidentiary needs of regulators 
include monitoring the effectiveness, safety, and utilization 
of health products in routine care [3]. Ideally, the evidence 
generated for regulatory purposes should be scientifically 
valid, timely, meaningfully contextualized, and sufficient for 
drawing conclusions while maintaining transparency in the 
evidence generation process [3].
	 However, analysing RWD (typically from healthcare data-
bases) and generating RWE that fulfils the aforementioned 
requirements can be challenging [4]. RWD is predominantly 
observational in nature and is rarely collected for research 
purposes. RWD is also often not organized in a form that is 
suited for analysis. Disparate data coding standards, database 
architectures, and vocabularies can pose further challenges 
in generating RWE for informing regulatory decisions, par-
ticularly when multiple databases are involved [5]. Using 
a common data model (CDM) may address some of these 
challenges by harmonizing the architectures and vocabular-
ies of different databases, which confers analytical interop-
erability [6]. Converting source data into a CDM creates a 
copy of the original data and reshapes it to fit the common 
structure of the CDM. Individual data elements from source 
are translated to the standardized vocabularies and columns 
from various source tables are split or merged to fit into 
target table columns of the CDM [5,7]. CDM-converted da-
tabases may then facilitate multi-centre analyses and pooling 
of results to obtain more robust inferences for various study 
questions of interest [6,8-10] .
	 While the benefits of CDM conversion for academic pur-
poses are relatively clear, the contribution of CDM conver-
sion towards meeting the broad evidentiary requirements set 
forth for regulatory purposes remains to be elucidated [3,8]. 
The aim of this study was to characterize the potential use-
fulness of CDM conversion by conducting a sample benefit-
risk assessment involving CDM-converted data. The Obser-
vational Medical Outcomes Partnership (OMOP)-CDM was 
selected for this study because of its large active user com-
munity and use of open-source software, which facilitates 
code sharing and peer review [6].

II. Methods

This study was performed in two phases. The first phase in-
volved conversion of Electronic Medical Record (EMR) data 
from their source files to the OMOP-CDM, while the second 
phase involved an illustrative benefit-risk assessment of the 
converted data using available tools and code sets. 

1. Phase 1: Conversion of Source Data to OMOP-CDM
1) Source data 
EMR data originating from a tertiary acute care hospital 
in Singapore, which provides a wide range of medical and 
surgical speciality services, were used in this paper. The data 
contained information on 258,038 unique patients who vis-
ited the hospital between January 2013 and December 2016, 
and comprised approximately 1.1 million records of medical 
conditions, 5.2 million transactions of ordered medications, 
and 15.5 million records of laboratory tests and investiga-
tions. 

2) Conversion of source data to the OMOP-CDM 
A precedent for converting a portion of EMR data from 
Singapore was previously set [11]. Source data tables were 
transformed into the OMOP-CDM version 5.3.0 through 
three key steps. Firstly, the source data were profiled to un-
derstand its structure and content. Secondly, source data 
elements were mapped to a specified target location on the 
CDM schema, through extract, transform, and load (ETL) 
operations [12]. This step was facilitated by the “Rabbit-
In-a-Hat” software, an open-source tool developed by the 
Observational Health Data Sciences Initiative (OHDSI) for 
generating flow diagrams illustrating the movement of data 
elements from source to target [13] (Figure 1). Lastly, vo-
cabulary mappings were applied to translate the codes and 
values used in the source data to those used in the CDM. 

3) Mapping vocabularies from source to target
The data vocabularies employed included the International 
Classification of Diseases, 9th and 10th revisions (ICD-9, 
ICD-10) and Systematic Nomenclature of Medicine Clinical 
Terms (SNOMED-CT) for diagnosis codes, RxNorm Exten-
sion for drugs, and Logical Observation Identifiers Names 
and Codes (LOINC) for laboratory tests and vitals mea-
surements. In general, ETL was performed if a concept was 
available in the respective vocabularies and could be mapped 
via database joins with the OMOP concept table (Figures 2, 
3). Further details on mapping of drug exposures, diagnosis 
codes, and laboratory tests can be found in the Supplement A.
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Figure 2. ‌�Example of mapping from local concepts to concepts in the Observational Medical Outcomes Partnership (OMOP) vocabulary. 
ICD-10: International Classification of Diseases 10th edition, SNOMED-CT: Systematic Nomenclature of Medicine Clinical Terms.
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Figure 1. �Mapping from source database to target database generated by the Observational Health Data Sciences Initiative (OHDSI) 
Rabbit-In-a-Hat tool. CDM: common data model.
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2. Phase 2: Illustrative Analysis following CDM Conversion
1) Sample cohort assembly and drug exposure
We identified patients diagnosed with atrial fibrillation 
(AF) without any prior bleeding and/or thromboembolic 
events for at least 1 month before the first oral anticoagulant 
(OAC; warfarin or rivaroxaban) exposure in an inpatient or 
outpatient setting. These patients were followed for at least 
3 months after the date of first OAC exposure. Observation 
ended at the time of bleeding or a thromboembolic event, or 
at the end of the study. The pre-exposure and follow-up peri-
ods were deliberately curtailed because of the limited obser-
vation periods available in the data. Patients were included 
in the final cohort if they had at least one OAC dispensing 
record in the 3 months following index exposure in an inpa-
tient or outpatient setting. These patients were followed up 
for the occurrence of bleeding or thromboembolic events 
at any time after the first OAC exposure. Figure 4 outlines 
the protocol and definitions applied in this study. Due to the 
different follow-up times of each patient, a landmark-based 
analysis at 3 months was performed to equalize the observa-
tion times of patients in both arms. More details and pheno-
type definitions can be found in Supplement A. 

2) �Visualizing comparative safety, effectiveness, and utiliza-
tion for benefit-risk assessments

The outcomes of interest in the illustrative analysis were the 
occurrence of bleeding to represent safety and thromboem-
bolic events to represent effectiveness (or the lack thereof). 
Patients in the cohort were grouped according to their OAC 
drug exposure, and only events that occurred during con-
current OAC exposure were extracted. 
	 Adapting a previous OMOP-CDM study by Hripcsak et 
al. [14], 100%, horizontally stacked, utilization-adjusted bar 
charts were used to visualize drug utilization (represented 
by vertical bar thickness) and effectiveness and safety event 
proportions (represented by horizontal proportion within 
each bar) to facilitate multiple comparisons in benefit-risk 
assessments. The charts were created using R version 3.6.0 
(https://cran.r-project.org). The SQL and R code used in this 
study is provided in Supplement B. 

3) �External validation of code on previously converted data 
and comparisons of the results of the illustrative analysis 

An external validation exercise was performed to assess the 
validity and generalizability of the analytic code on con-
verted OMOP-CDM data. As a mature data partner in the 

Differentiating between source values, source concept ids, and standard concept ids

Concept id1: 44836915
Concept id2: 45561952
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repeatable representation of
the source concept, when the
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drawn from a commonly-used
internationally-recognized
vocabulary that has been
distributed with the
OMOP common data model.
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any standardized analytics.
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Figure 3. ‌�Differentiating between sou
rce values, source Concept 
IDs, and standard Concept 
IDs. OMOP: Observational 
Medical Outcomes Partner-
ship, ICD-9: International 
Classification of Diseases 
9th edition, ICD-10: Inter-
national Classification of 
Diseases 10th edition.
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outcomes.
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field of OMOP-CDM, we engaged collaborators from Ajou 
University, South Korea, who had converted EMR data from 
Ajou University Medical Center (AUMC)—a 1,200-bed 
tertiary care facility providing medical and surgical special-
ity services—into the OMOP-CDM [15,16]. The data from 
AUMC contained information on about 2,700,000 patients 
who visited the hospital between January 1994 and De-
cember 2020. The code testing exercise and comparison of 
results were performed to illustrate the potential of generat-
ing comparable results from different geographical cohorts 
of patients and to assess whether any signal of observable 
differences between agents compared persisted across dif-
ferent cohorts. This study was approved by the Institutional 
Review Board of Ajou University Hospital (No. AJIRB-
MED-MDB-21-191), and the need for informed consent was 
waived due to the use of de-identified data.

III. Results

1. Phase 1: Conversion of Source Data to OMOP-CDM
Table 1 shows the quantity of data imported in comparison 
with the source data tables. Over 90% of records from the 
original table were mapped over to the CDM, except for dis-
pensing records, which included many non-drug items such 
as foods, syringes, and gauzes. Other types of records not 
mapped to the CDM included persons with missing birth 
dates, as well as laboratory records where the corresponding 
LOINC codes were unavailable or had few records. Diagno-
ses involving conditional occurrences such as road accidents 
were excluded, as these were non-crucial for pharmacovigi-
lance studies. Records belonging to 245,561 unique patients 
were converted into the OMOP-CDM.

2. Phase 2: Illustrative Analysis
A simulated risk-benefit assessment was performed to 
envisage the potential of OMOP-CDM-converted data in 
facilitating comparative assessments to inform regulatory 
decision-making. The results of this analysis are intended 
for illustrative purposes only and are not meant to be inter-
preted clinically.
	 In our sample analysis involving OACs for AF, we identi-
fied 364 patients from Singapore and 2,055 patients from 
South Korea who fulfilled the inclusion/exclusion criteria 
(Figure 5). Most patients were warfarin users: 73.9% (n = 
269) in Singapore and 65.4% (n = 1,345) in South Korea. The 
patients in the Singaporean cohort were older than those in 
the South Korean cohort. Among warfarin users, the median 
(interquartile range) age was 70 years (15 years) in Singapore 
compared to 63 years (17 years) in South Korea (Table 2). 
The rivaroxaban users in South Korea tended to be older 
with median age of 69 years (14 years) than those on warfa-

Table 1. Quantity and structure of data imported from a tertiary acute care hospital in Singapore from January 2013 to December 2016

OMOP-CDM table Source table

Table name Number of rows of records Table name Number of rows of records Proportion migrated (%)

person 245,561 t_demographics 258,038 95.2
condition_occurrence (primary) 210,830 t_primary_diagnosis 222,554 94.7

(secondary) 799,169 t_secondary_diagnosis 839,265 95.2
measurement 14,116,544 t_lab_result 15,523,576 90.9
visit_occurrence 1,041,587 t_encounter 1,057,263 98.5
drug_exposure 4,378,657 t_eprescription_dispensinga 2,147,505 84.8

t_inpatient_med_orderb 3,015,159 84.8
aRefers to outpatient pharmacy orders and inpatient discharge prescriptions.
bRefers to medications used during inpatient ward stay.

Singapore cohort

Number of persons
(n = 245,561)

Number of persons with at least
one drug exposure to an

anticoagulant
(n = 2,910)

Number of persons with at least
one drug exposure and >1 month

or prior observation and >3
months of follow-up observation

(n = 1,359)

Number of persons in final
qualifying cohort

(n = 364)

South Korea cohort

Number of persons
(n = 2,714,449)

Number of persons with at least
one drug exposure to an

anticoagulant
(n = 12,736)

Number of persons with at least
one drug exposure and >1 month

or prior observation and >3
months of follow-up observation

(n = 7,342)

Number of persons in final
qualifying cohort

(n = 2,055)

Figure 5. ‌�Flow diagram showing the number of persons in the fi-
nal qualifying cohorts from Singapore and South Korea.
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rin. The South Korean cohort also had a noticeable dispar-
ity according to sex (60.9% male, 39.1% female), while the 
Singaporean cohort was more balanced (51.1% male, 48.9% 
female). The descriptive and clinical characteristics of both 
cohorts are detailed in Tables 2 and 3.
	 To visualize the relative proportions of individuals experi-
encing bleeding (safety) and thromboembolism (effective-
ness or lack thereof), while accounting for differences in 
utilization, we propose the use of 100%, horizontally stacked, 
bar charts. The left (pink) and right (blue) regions of a bar 
are used to represent safety and effectiveness, respectively, 

while the central region represents the event-free proportion 
not experiencing any bleeding or thromboembolic events. 
The sections are coloured to facilitate comparisons within 
and between agents [17] (Figure 6).
	 The unadjusted analyses suggested that the overall propor-
tion of bleeding events appeared to be higher among war-
farin users than among rivaroxaban users in both cohorts 
(Figure 6), with the difference being more pronounced in 
the older Singaporean cohort. However, the higher bleed-
ing risk with warfarin appeared to come at a trade-off for 
fewer thromboembolic events in the Singaporean cohort. 

Table 2. Baseline characteristics of the final cohorts from Singapore and South Korea 

Warfarin Rivaroxaban Combined 
p-valued

Singapore South Korea Singapore South Korea Singapore South Korea 

Number of patients 269 (73.9) 1,345 (65.5) 95 (26.1) 710 (34.5) 364 (100) 2,055 (100)
Age (yr) 70 (15) 63 (17) 71 (15) 69 (14) 72 (15) 66 (17) <0.001
Sex <0.001
      Male 142 (52.7) 854 (63.5) 44 (46.3) 398 (56.1) 186 (51.1) 1,252 (60.9)
      Female 127 (47.2) 491 (36.5) 51 (53.7) 312 (43.9) 178 (48.9) 803 (39.1)
Race <0.001
      Korean NA 1,345 (100) NA 710 (100) NA 2,055 (100)
      Chinese 163 (60.6) NA 66 (69.5) NA 229 (62.9) NA
      Malay 66 (24.5) NA 20 (21.1) NA 86 (23.6) NA
      Indian 20 (7.4) NA 5 (5.3) NA 25 (6.9) NA
      Others 20 (7.4) NA 4 (4.2) NA 24 (6.6) NA
Event outcomea <0.001
      Bleeding 81 (30.1) 166 (12.3) 8 (8.4) 47 (6.6) 89 (24.5) 213 (10.4)
      Thromboembolic 32 (11.9) 219 (16.3) 15 (15.8) 64 (9.0) 47 (12.9) 283 (13.8)
      Neither 156 (58.0) 960 (71.4) 72 (75.8) 599 (84.4) 228 (62.6) 1,559 (75.9)
Concurrent medications (within 7 days 

before occurrence of bleeding)
NA

      Aspirin 7 (2.6) 66 (4.9) 1 (1.1) 2 (0.3) 8 (2.2) 68 (3.3)
      Other NSAIDsb 1 (0.4) 7 (0.5) 2 (2.1) 1 (0.1) 3 (0.8) 8 (0.4)
      Clopidogrel 1 (0.4) 15 (1.1) 1 (1.1) 2 (0.3) 2 (0.5) 17 (0.8)
      Other antiplateletsc 0 (0) 1 (0.1) 0 (0) 0 (0) 0 (0) 1 (0)
Values are presented as number (%); for age, the median (interquartile range) are used to indicate the value.
Assignment of patients to drug groupings is based on the latest drug taken by the patient, except in one patient who was on warfarin 
but who took apixaban for 2 days, and another who was on warfarin but took rivaroxaban for 1 day. 
aBased on the earlier event if patient had records of both bleeding and thromboembolic events. 
bOther non-steroidal anti-inflammatory drugs (NSAIDs) included for analysis were celecoxib, diclofenac, etoricoxib, ibuprofen, in-
domethacin, ketoprofen, mefenamic acid, meloxicam, naproxen, and piroxicam.
cOther antiplatelet drugs included for analysis were dipyridamole, eptifibatide, prasugrel, ticagrelor, and ticlopidine.
dComparing Singapore and South Korea population (using Kruskal-Wallis test for difference in age and Pearson chi-squared test for 
differences in gender, race, event outcome).
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Still, warfarin appeared to have a 3.6-fold higher bleeding 
risk (30.1% vs. 8.4%, p < 0.001), while rivaroxaban had a 1.4-
fold higher thromboembolism risk (15.8% vs. 11.9%, p = 
0.331) in Singapore. If bleeding and thromboembolism are 
weighted equally in terms of their impact on quality of life 
and survival, the relative benefits of rivaroxaban appear to 
outweigh the relative risks of warfarin. This insight is also 
available when comparing only the event-free proportions of 
the two agents (grey region), with rivaroxaban having 17.8% 
fewer overall events (75.8% vs 58.0%, p = 0.002) in absolute 
terms (Figure 6A, 6B). Similarly, in the South Korean cohort, 
rivaroxaban appears to be the preferred agent because both 
the proportions of bleeding and thromboembolism were 
higher among warfarin users than among rivaroxaban users. 

	 However, these comparisons do not consider the different 
follow-up times of patients receiving the two drugs, which 
could contribute to the seemingly larger risks, since warfarin 
had a longer duration of observation in the databases stud-
ied. A landmark-based analysis was performed to equalize 
the observation times of patients in both arms (Figure 6). 
Interestingly, this eliminated any difference between the two 
drugs in the South Korean cohort (there were in fact smaller 
proportions with bleeding and thromboembolic events with 
warfarin than with rivaroxaban). Similarly, the benefit-risk 
ratio in the landmark analysis of the Singaporean cohort did 
not clearly favour one agent over the other (1.0% difference 
in event-free proportions) (Figure 6C, 6D).

Table 3. Clinical characteristics of the final cohorts from Singapore and South Korea 

Concept ID
Warfarin Rivaroxaban

Singapore South Korea Singapore South Korea 

Number of patients 269 (76.5) 1,345 (65.5) 95 (19.7) 710 (34.5)
Number of diagnoses 310a 1,827 105b 961
Diagnosis (%)
   Atrial flutter 314665 1 (0.4) 0 (0) 0 (0) 0 (0)
   Atrial fibrillation 313217 33 (12.3) 0 (0) 4 (4.2) 0 (0)
   Atrial arrhythmiab 4068155 251 (93.3) 881 (65.5) 92 (96.8) 336 (47.3)
   Atrial fibrillation and flutter 4108832 13 (4.8) 0 (0) 2 (2.1) 0 (0)
   Atypical atrial flutter 36712986 0 (0) 3 (0.2) 0 (0) 0 (0)
   Chronic atrial fibrillation 4141360 0 (0) 71 (5.3) 0 (0) 111 (15.6)
   Paroxysmal atrial fibrillation 4154290 0 (0) 772 (57.4) 0 (0) 438 (61.7)
   Persistent atrial fibrillation 4232697 0 (0) 68 (5.1) 0 (0) 60 (8.5)
   Sick sinus syndrome 4261842 12 (4.5) 30 (2.2) 6 (6.3) 15 (2.1)
   Sinus node dysfunction 317302 0 (0) 0 (0) 1 (1.1) 0 (0)
   Typical atrial flutter 36714994 0 (0) 2 (0.1) 0 (0) 1 (0.1)
Duration (day)
   Anticoagulant used before occurrence of bleed 336 ± 296 1,501 ± 1,700 295 ± 305 492 ± 534
   Anticoagulant used before occurrence of 

thromboembolic event
369 ± 270 1,654 ± 1,527 243 ± 238 470 ± 436

Values are presented as number (%) or mean ± standard deviation.
a28 of the 269 patients were co-diagnosed with “atrial arrhythmia” (Concept ID: 4068155) in combination with “atrial fibrillation” 
(313217) and/or “atrial fibrillation and flutter” (4108832), while nine were co-diagnosed with “atrial arrhythmia” (4068155) and “sick 
sinus syndrome” (4261842) based on EMR, which is a descendant Concept ID based on OMOP. One patient was diagnosed with 
“atrial fibrillation” (313217) and “atrial fibrillation and flutter” (4108832) while one patient was diagnosed with “atrial arrhythmia” 
(4068155), “atrial fibrillation and flutter” (4108832), and “sick sinus syndrome” (4261842).
bSix of the 95 patients tagged with “atrial arrhythmia” (4068155) were diagnosed with “sick sinus syndrome” (4261842) based on 
EMR, which is a descendant Concept ID based on OMOP. Three patients were co-diagnosed with “atrial arrhythmia” (4068155) 
in combination with “atrial fibrillation” (313217) and/or “atrial fibrillation and flutter” (4108832). One patient was diagnosed with 
“atrial fibrillation” (313217) and “sinus node dysfunction” (317302).
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IV. Discussion

Our study identified several advantages of converting 
healthcare databases to the OMOP-CDM related to the con-
duct of RWD analysis. CDM conversion inevitably involves 
an inspection of the source data, which can uncover data 
defects. Tracing to find the root cause of these errors may 
enable appropriate fixes to be applied. Where unresolvable 
errors persist, insights as to which sections of the data (or 
time periods of data) are best left excluded from any analysis 
are invaluable, as their inclusion may lead to biased results. 
By exposing data inaccuracies and imposing data cleaning, 
CDM conversion can also be considered as a process of aug-
menting source data veracity. 
	 However, CDM conversion alters only the form, but not 
the substance of the data. This underscores the need to un-
derstand the provenance and processes that generated the 
data and what the data may (and may not) represent. Upon 
conversion, the set architecture of the CDM, the OHDSI 
tools, resources and opportunities (i.e., past and ongoing 
study protocols and, analytic code templates) create a fertile 

ecosystem that can speed up analyses, although some modi-
fications and extensions to previously written code are likely 
required for specific use cases. 
	 Since the previous study by Hripcsak et al. [14] focused on 
drug utilization patterns in chronic disease management, 
many code segments were reusable with simple modifica-
tions for the purposes of this study. The original code en-
abled easy specification of the inclusion and exclusion crite-
ria, as well as the observation period of interest. The OMOP-
CDM structure contains a derived table (termed the “Drug 
Era” table) that meaningfully aggregates all drug exposures. 
This consolidated drug exposure table allows analysts to 
define and apply the appropriate conditions required for a 
study (e.g., permitted gap days between prescription fills and 
stockpiling of previously filled prescriptions). The “Drug 
Era” table therefore simplifies precise exposure specifica-
tions, which are critical in pharmacoepidemiology analyses. 
Notably, these derived data element features are unavailable 
in other CDMs, such as the pCORnet, Sentinel, and i2b2 
CDMs, which organize medication data at the transaction 
level, although there may be code segments available to in-
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Figure 6. ‌�Total cohort follow-up analysis: (A) and (B) are 100%, horizontally-stacked, utilization-adjusted bar charts of effectiveness 
and safety. The vertical height of each bar is proportional to the number of patients in the Singaporean and South Korean 
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unadjusted for confounding factors. Drug A: rivaroxaban, Drug B: warfarin.
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stantaneously aggregate drug exposures during analysis.
	 The descriptive analysis of OAC usage provides insights 
on the background incidence of events of interest within a 
defined observation window. The analysis essentially cov-
ers what is described by the US Sentinel Initiative as level 1 
analyses [18]. These unadjusted descriptive analyses account 
for more than 80% of all queries by the US Food and Drug 
Administration in 2020 to investigate possible drug safety 
signals. Level 1 analyses help regulators filter signals that 
warrant subsequent analyses (level 2 and beyond), which 
typically involve more complex methods for covariate ad-
justment through various approaches including propensity 
score matching and stratification [18,19].
	 Beyond these analyses, comparative assessments may be 
needed to holistically evaluate the overall impact of any 
measures undertaken to optimize public health. This would 
include an analysis of the benefits and risks of a drug rela-
tive to that of available alternatives, in the context of its 
real-world utilization for various therapeutic purposes. 
Regulatory actions can have far-reaching effects on public 
health. Benefit-risk assessments facilitate understanding of 
the potential consequences of various measures undertaken. 
Large-scale comparative effectiveness analyses have been 
performed using OMOP-CDM converted data [8-10]. While 
these are useful, the primary focus and presentation of re-
sults in these analyses tend to focus on presenting risks on a 
relative scale. Regulatory agencies, however, require absolute 
risk estimates along with real world utilization to establish 
the net public health impact of policy decisions [3]. 
	 To facilitate multiple comparisons as part of benefit-risk 
assessments, we propose using 100% horizontally stacked 
bar charts (Figure 6) that amalgamate real-world utilization 
with effectiveness and safety information. The modularized 
code provided to derive these charts can be readily extended 
to other drug classes with composite endpoints to represent 
outcomes of interest (e.g., major adverse cardiovascular 
events). The figure facilitates comparisons of the overall 
prevalence of thromboembolic and bleeding events across 
anticoagulants at the end of follow-up. Such figures may also 
be useful for economic analyses, such as cost-effectiveness 
studies. However, unequal follow-up durations of patients 
on newer versus older medications are inevitable when us-
ing RWD for comparative analyses. To address this issue, we 
propose applying fixed time-point analyses to eliminate dif-
ferential time zeros and the potential for immortal-time bias 
[20] (Figure 6C, 6D).
	 Our study has a few limitations. Firstly, the CDM conver-
sion was only done using one hospital’s data; therefore, any 

characterization of the challenges and advantages of conver-
sion may be limited. However, several advantages were iden-
tifiable even using only one database. Secondly, an identical 
analysis was not performed on pre-converted data, as the 
emphasis was on the possibility of using CDM for regulatory 
assessments rather than the technical details of conversion. 
As various data cleaning steps may be undertaken during 
conversion, not obtaining identical results (pre- and post-
conversion) might be an expected outcome. Instead, we 
validated the analytic code by applying it on an external co-
hort of patients to indirectly validate the conversion process, 
while obtaining a separate set of results for comparison [21]. 
Third, the proposed 100% stacked bar graphs remain an un-
adjusted descriptive analysis of the rate of events in different 
populations exposed to comparator agents. Incorporating 
methods to adjust for confounders and visualize the adjusted 
event rates would be important areas of future research. 
Fourthly, the cohorts from the two countries used were 
demographically different, which could introduce alterna-
tive explanations for the study findings; however, studying 
varied populations may occasionally be desirable to evaluate 
the consistency of results. Nonetheless, the use of data from 
two countries and the evaluation of the reproducibility of 
the analytic code across countries may be seen as a strength 
of this study, as this demonstrates the potential applicability 
of this approach to regulators of other countries. Lastly, our 
study did not evaluate aspects of CDM conversion relating 
to the mapping coverage and speed relative to other CDMs. 
These may be of interest to groups looking to embark on the 
journey of CDM conversion. 
	 Regulatory agencies are increasingly looking to incorporate 
RWE generated through the analysis of RWD for regulatory 
decision-making. The findings of this study demonstrate 
that having access to datasets in the OMOP-CDM format 
facilitates RWD analysis and can be useful for gleaning in-
sights on comparative drug utilization, effectiveness, and 
safety for risk-benefit assessments. While the initial conver-
sion is challenging and needs to be done judiciously, the 
availability of an active community of researchers and open 
sharing of previously written analytic code promotes trans-
parency and scientific validity in generating RWE that is 
fit-for-purpose. The ability to refine previously developed 
analytic code with simple modifications is an important step 
in harnessing RWD to supplement benefit-risk assessments 
and enable the conduct of robust evaluations on post-market 
drug effectiveness and safety use cases, and ultimately make 
evidence-based decisions to optimise health outcomes.
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