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Diatom frustule silica extracted 
from Melosira nummuloides ameliorates 
acetaminophen‑induced acute liver injury 
in mice
Jae Ho Choi1,4, Gyung Min Go3 and Tatsuya Unno1,2*    

Abstract 

Melosira nummuloides is a type of diatom in the family Melosiraceae. Diatoms are unicellular microalgae widely dis-
tributed in aquatic environments. Diatoms are known to be suitable for many industrial and biomedical applications 
because of their high biocompatibility and ease of use. In this study, we investigated the hepatoprotective effect of 
diatom frustule silica (DFS) extracted from Melosira nummuloides on hepatotoxicant-induced liver injury. Hepato-
protective effects of DFS were examined using acetaminophen-induced acute liver injury (ALI) mouse model. We 
evaluated the hepatoprotective effects through hepatotoxicity, pro-inflammatory cytokines, transcriptional factors, 
upstream signaling pathways, and histopathological analysis by DFS in an animal model of acetaminophen-induced 
ALI. Our results showed serum alanine aminotransferase/aspartate aminotransferase activity and hepatic malondial-
dehyde formation were significantly attenuated upon DFS administration. DFS also ameliorated glutathione depletion 
and down-regulated acetaminophen-induced CYP2E1. DFS administration also down-regulated expressions of pro-
inflammatory cytokines through preventing NF-κB activation by JNK1/2 phosphorylation inhibition. These findings 
demonstrate that the hepatoprotective effect of DFS is associated with suppression of inflammatory responses in an 
animal model of acetaminophen-induced ALI.
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Introduction
The liver is an important organ responsible for metabo-
lism and drug detoxification in the body, but various 
causes such as indiscriminate drug intake, excessive 
alcohol consumption, and viral infection can damage 
the liver. Excluding genetic and environmental factors, 
most liver damage is caused by drug ingestion [1, 2]. 
Acute liver injury (ALI) is a common pathological feature 
of many liver diseases and is associated with hepatitis, 

liver fibrosis, liver cirrhosis, and liver cancer [3]. Drug-
induced hepatotoxicity is a major cause of ALI and is 
known to cause high morbidity and mortality worldwide 
[4]. Acetaminophen, the main component of Tylenol, 
can be purchased without a prescription as an analge-
sic and antipyretic; however, it can cause ALI through 
inflammation induction, hepatic cell damage, and liver 
failure when acetaminophen is used more than indicated 
[5]. Hepatic damage due to acetaminophen overdose 
accounts for 50% of all ALI cases in the United States and 
for 40–70% in the United Kingdom and Europe [6, 7].

ALI is induced when acetaminophen is metabo-
lized, through oxidation by CYP2E1, to form N-acetyl-
p-benzoquinone imine (NAPQI), a highly electrophilic 
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metabolite. NAPQI causes hepatocellular damage by 
forming lipid peroxide and depleting glutathione (GSH), 
causing oxidative stress, which activates upstream sign-
aling pathways leading to mitochondrial toxicity [8–11]. 
In response to acetaminophen-induced hepatocellular 
damage, antioxidant enzymes scavenge mitochondria-
generated reactive oxygen species (ROS) to maintain 
hepatocellular homeostasis [12]. Therefore, the induc-
tion of antioxidant enzymes is an important strategy for 
protecting or ameliorating acetaminophen-induced liver 
injury.

Natural resources are less toxic and can be used as an 
effective remedy for diseases. There is increasing inter-
est in their application to protect the liver from dam-
age caused by drugs or alcohol intake [13]. Diatoms are 
unicellular eukaryotic microalgae with porous silica 
micro shells that can replace synthetic silica. Diatom 
cells are surrounded by nanostructured silicon cell walls 
to protect them against environmental stress. This silica 
is a biocompatible and non-toxic substance collected 
from living algae or fossil deposits of diatomaceous soil 
and has medical uses, as micro/nano-carrier materials 
or drug delivery systems, and theranostic uses [14]. A 
recent study reported that Diatom Frustule Silica (DFS) 
extracted from Melosira nummuloides in Lava seawa-
ter from Jeju Island exhibited hemostatic reactions both 
in vivo and in vitro [15]. However, the hepatoprotective 
effect of DFS extracted from Melosira nummuloides on 
hepatotoxicant-induced ALI has been unknown. In this 
study, we aimed to investigate the potential hepatopre-
ventive effects of DFS extracted from Melosira nummu-
loides on acetaminophen-induced ALI in mice model.

Materials and methods
Reagents
Acetaminophen and silymarin were purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). Antibodies 
against cytochrome P450 family 2 subfamily E member 1 
(CYP2E1), phospho-nuclear factor kappa B (NF-κB) p65, 
NF-κB p65, phospho- IkappaB-alpha (IκBα), IκBα, phos-
pho-JNK1/2, JNK1/2, β-actin, HRP-linked anti-mouse 
IgG, and HRP-linked anti-rabbit IgG were obtained 
from Abcam, Inc. (Cambridge, MA, USA), Santa Cruz 
Biotechnology, Inc. (Dallas, TX, USA), and Cell Signal-
ing Technology, Inc. (Danvers, MA, USA). Nuclease-
free water was obtained from Invitrogen (Carlsbad, CA, 
USA).

Preparation of DFS
Melosira nummuloides was collected from Lava seawa-
ter from Jeju Island. Cells were enriched at 18 °C for two 
weeks using Jeju Lava seawater and then dried at JNC 
Bio Fisheries Co., Ltd. (Jeju, Korea). Cells are ignited 

in a muffle furnace for 6 h at 950  °C to remove organic 
matters. Using NaOH, pH was adjusted to 12 to make it 
water-soluble. HCl was then added to neutralize the pH 
to 7. Inorganic composition of DFS was measured using 
inductively coupled plasma optical emission spectros-
copy (ICP-OES) at Korea institute of ceramic engineering 
& technology (Jinju, Korea) (Additional file 1: Table S3). 
Previously, the properties of DFS were characterized by 
scanning electron microscope (Inspect F50, FEI Com-
pany Inc., OR, USA), x-ray photoelectron spectroscopy 
(Sigma probe, Thermo VG Scientific, MA, USA), pH 
meter (Orion Star A211, Thermo Fisher Scientific, MA, 
USA), attenuated total reflection-Fourier transform infra-
red spectroscopy (Nicolet iS50, Thermo Fisher Scientific 
Instrument, MA, USA), and zeta potential and particle 
size analyzer (ELSZ-2000, Otsuka Electronics Co., Osaka, 
Japan) [15]. This DFS was supplied by JDKBIO Inc (Jeju, 
Korea).

Animals and experimental design
SPF 8  week-old, male ICR mice were purchased from 
DBL Co., Ltd. (Daejeon, Korea). The mice were allowed 
ad libitum access to rodent chow diet (Orientbio, Gyeo-
nggi-do, Korea) and tap water. The mice were maintained 
in a controlled environment at 22 ± 2  °C and 50 ± 5% 
relative humidity under a 12  h dark/light cycle. The 
mice were randomly divided into five groups to set up 
a dose–response model (n = 6 mice/group): (1) control 
group, (2) 300 mg/kg acetaminophen group, (3) 300 mg/
kg acetaminophen + 7.5 mg/kg DFS group, (4) 300 mg/kg 
acetaminophen + 30 mg/kg DFS group, and (5) 300 mg/
kg acetaminophen + 50 mg/kg silymarin group. DFS and 
silymarin were orally administered once daily for seven 
consecutive days. Mice in the control and acetaminophen 
groups were given saline. After administration of treat-
ment on the seventh day, the mice fasted for 12 h were 
subsequently injected intraperitoneally with acetami-
nophen solution and euthanized after 8 h. Blood was col-
lected from the vena cava, and the right liver lobe was 
removed, subjected to histopathological analysis, and 
stored at −  80  °C until required for hepatic functional 
analyses [10]. All experimental protocols were performed 
according to the rules and regulations of the Animal Eth-
ics Committee of Jeju National University (The IACUC of 
Jeju National University; Approval Number 2021-0029).

Histopathological examination
Liver samples damaged by acetaminophen were fixed 
in 10% neutral buffered formalin solution for 7  days. 
Briefly, the fixed liver tissues were embedded in paraf-
fin followed by a dehydration process with increasing 
ethanol concentration to remove water. The embed-
ded tissue was sliced into small Sects.  (5  μm) using a 
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microtome (Leica Biosystems, IL, USA). For histologi-
cal evaluation, each liver sections were mounted on 
plain glass slides and generally stained with hematoxy-
lin and eosin staining methods (Histoire, Seoul, Korea). 
Histopathological observations of each section were 
observed at 100 ×magnification under a microscope 
(Leica Microsystems, Wetzlar, Germany).

Hepatotoxicity determination
Hepatotoxicity was determined by measuring serum 
ALT and AST activity levels, hepatic MDA content, and 
GSH levels according to the manufacturer’s instruc-
tions. Serum ALT/AST activity was analyzed using 
GPT/GOT diagnostic kits (Asan Pharmaceutical Co., 
Seoul, Korea) [10]. Hepatic MDA formation was meas-
ured by OxiTec™ TBARS Assay Kit (Biomax Co, Ltd., 
Seoul, Korea) in colorimetric at 532 nm. Briefly, 100 mg 
liver tissue was washed with cold PBS, homogenized, 
and centrifuged to collected the supernatant. Indica-
tor solution was added to the prepared supernatant and 
standard solution microcentrifuge tube. After incuba-
tion at 65  °C for 45  min, 150  μL of each sample was 
dispensed into a 96-well microplate, and absorbance 
was measured at 532 nm with a microplate reader (Agi-
lent, CA, USA). Hepatic GSH contents were measured 
by OxiTec™ Glutathione Assay Kit (Biomax Co, Ltd., 
Seoul, Korea) in colorimetric at 412 nm. Briefly, 100 mg 
liver tissue was washed with cold PBS, homogenized by 
5% MPA, and centrifuged to collect the supernatant. 
After carefully placing 50 μL of sample at the bottom of 
the Eppendorf tube, cold 5% MPA solution was added 
to the Eppendorf tube, vortexed for 15–20  s and cen-
trifuged. The supernatant was mixed with Assay Buffer 
I, and absorbance was measured at 412  nm with a 
microplate reader (Agilent, CA, USA). The information 
of evaluation kits for hepatotoxicity is summarized in 
Additional file 1: Table S1.

RNA extraction and qPCR
Total RNA was extracted from the left liver tissues using 
RNAiso Plus reagent (Takara Korea Biomedical Inc., 
Seoul, Korea). Total RNA concentration was measured 
using a spectrophotometer DS-11 plus (DENOVIX Inc., 
DE, USA). cDNA was synthesized from 1  µg of RNA 
using the BioFACT​™ RT Kit (BioFACT Inc., Daejeon, 
Korea) with oligo dT primers for reverse transcription. 
The PCR primers were synthesized by Macrogen Inc. 
(Seoul, Korea), and the primer sequences and anneal-
ing temperatures are summarized in Table 1. qPCR was 
performed using a Thermal Cycler Dice® Real Time Sys-
tem Lite (Takara Bio Inc., Shiga, Japan) with 40 cycles of 
denaturation (94  °C, 60 s), annealing (60 s), and elonga-
tion (72 °C, 60 s).

Western Blot
Total protein was extracted from the leftover liver tis-
sues using CETi lysis buffer with inhibitors containing 
protease and phosphatase inhibitors (TransLab, Dae-
jeon, Korea). Total protein was quantified using the Brad-
ford method, separated on 10% or 12% polyacrylamide 
gels, transferred to nitrocellulose membranes (Bio-Rad, 
CA, USA), and probed with the appropriate 1st and 2nd 
antibodies. For western blot, each primary antibody 
was incubated on overnight at 4ºC, and each secondary 
antibody was incubated on 1–2 h at room temperature. 
The western blot antibodies were obtained by Abcam, 
Inc., Santa Cruz Biotechnology, Inc., and Cell Signaling 
Technology, Inc., and antibodies information are sum-
marized in Additional file  1: Table  S2. The membrane 
was made luminescent with ECL Plus Detection Kit 
(BioFACT Inc., Daejeon, Korea) solution and visualized 
using the ImageQuant™ LAS 4000 mini (GE Healthcare 
Japan Corporation, Tokyo, Japan). Protein expression and 
phosphorylation for specific antibodies were quantified 
using by densitometry ImageJ software (National Insti-
tutes of Health, Bethesda, MD, USA). The information of 

Table 1  The primer sequences and annealing temperature for qPCR

Gene Direction Sequences NCBI Number Annealing 
temperature

TNF-α Forward TTG​TCT​ACT​CCC​AGG​TTC​TCTT​ NM_001278601.1 58

Reverse ACT​TTC​TCC​TGG​TAT​GAG​ATAGC​

IL-1β Forward TGA​CTC​ATG​GGA​TGA​TGA​TGA​TAA​C NM_008361.4 55

Reverse TGA​GGT​GGA​GAG​CTT​TCA​G

IL-6 Forward CTC​TCT​GCA​AGA​GAC​TTC​CAT​ NM_001314054.1 58

Reverse CCG​ACT​TGT​GAA​GTG​GTA​TAG​

β-actin Forward CCA​CCA​GTT​CGC​CAT​GGA​T NM_007393.5 56

Reverse CCA​CGA​TGG​AGG​GGA​ATA​CA
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Fig. 1  Preventive effects of Diatom Frustule Silica (DFS) extracted from Melosira nummuloides on acetaminophen-induced acute liver injury 
(ALI) in mice. Mice were orally administered with 7.5 or 30 mg/kg DFS or 50 mg/kg silymarin once daily for seven consecutive days. Control 
and acetaminophen-treated groups were orally administered with saline. After oral administration of the last chemical and fasting for 12 h, 
mice were intraperitoneally injected with 300 mg/kg acetaminophen and sacrificed after 8 h. ALI was evaluated by measuring A serum alanine 
aminotransferase (ALT) and B aspartate aminotransferase (AST) activity levels, C hepatic malondialdehyde (MDA) content, and D glutathione (GSH) 
levels. E Representative liver tissues of each group for histopathological analysis were stained with hematoxylin and eosin at 100 ×magnification. 
The results are presented as the mean ± standard deviation (SD) (n = 6). ###Significantly different from the control group (p < 0.001). **Significantly 
different from the acetaminophen-treated group (p < 0.01). ***Significantly different from the acetaminophen-treated group (p < 0.001)
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antibodies for western blot is summarized in Additional 
file 1: Table S3.

Statistical analysis
The results are presented as the mean ± standard devia-
tion. Statistical analyses were performed using GraphPad 
InStat (GraphPad Software Inc., San Diego, CA, USA) 
using a one-way of variance (ANOVA) as indicated. 
Statistical significance was evaluated using the Tukey–
Kramer test by ANOVA with p < 0.01 and p < 0.001 as the 
levels of significance.

Results and discussion
DFS administration prevented acetaminophen‑induced ALI 
by suppressing CYP2E1 expression
Hepatitis, alcohol, obesity, and drugs are known causes 
of liver damage. Among these, excessive drug use is the 
most frequent cause of liver damage. Drug-induced 

hepatotoxicity is the major cause of acute liver damage, 
and an overdose of acetaminophen has been frequently 
reported [16]. Acetaminophen overdose is known to 
cause liver inflammation, hepatocellular damage, and 
liver failure. In fact, liver dysfunction due to acetami-
nophen overdose is the most well-known cause of drug-
induced liver damage worldwide [17] thus, it is important 
to prevent drug-induced acute liver injuries. Therefore, 
we first evaluated the hepatopreventive effects of DFS on 
acetaminophen-induced hepatotoxicity in mice.

The indicators of acetaminophen-induced hepatotoxic-
ity are shown in Fig. 1A–D. Serum alanine aminotrans-
ferase/aspartate aminotransferase (ALT/AST) activity 
levels and hepatic malondialdehyde (MDA) formation 
increased, whereas hepatic GSH content decreased by 
acetaminophen. Furthermore, representative images 
from each group were evaluated based on the degree of 
hepatocellular damages caused by acetaminophen in his-
topathological observations stained with hematoxylin 
and eosin (Fig.  1E). Acetaminophen-treated group was 
observed serious hepatocellular damages around the cen-
tral venous areas compared with the control group. How-
ever, the administration of DFS reduced hepatocellular 
injury in a dose-dependent manner.

CYP2E1 plays an important role in the biological acti-
vation of toxic substances that cause liver damages by 
converting acetaminophen to NAPQI [18, 19]. Acetami-
nophen-induced ALI is initiated by NAPQI, a metabo-
lite formed by the drug-metabolizing enzyme CYP2E1. 
NAPQI is a toxic metabolite that reacts with GSH and 
is safely excreted. When GSH content is depleted, excess 
free NAPQI reacts with in tracellular proteins to induce 
cell disturbance, which gradually induces liver dysfunc-
tion, hepatocyte damage, and acute liver injuries [4]. In 
this study, we observed that hepatic CYP2E1 expres-
sion was inhibited in mice that were pre-administered 
with DFS in a dose dependent manner (Fig. 2), suggest-
ing that DFS has preventive effects on acetaminophen-
induced hepatotoxicity through suppression of CYP2E1 
expression.

DFS administration decreased acetaminophen‑induced 
pro‑inflammatory cytokine expression by suppressing 
NF‑κB activation
Overproduction of pro-inflammatory cytokines is a 
symptom of hepatic injury, and an inflammatory response 

Fig. 2  Preventive effect of DFS on acetaminophen-induced hepatic 
CYP2E1 expression in mice. A The hepatic protein level of CYP2E1 and 
β-actin was determined by western blot. B Protein expression was 
evaluated using ImageJ software. The relative expression of target 
protein was compared using β-actin as a control

Fig. 3  Preventive effect of DFS on acetaminophen-induced hepatic pro-inflammatory cytokine expression levels and NF-κB activation in mice. 
The hepatic mRNA expression levels of A TNF-α, B IL-1β, and C IL-6 was determined by quantitative PCR. D The hepatic protein expression level 
of phospho-NF-κB p65, NF-κB p65, phospho-IκBα, IκBα, and β-actin was determined by western blot. (E) Protein expression was evaluated using 
ImageJ software. The relative expression of target protein was compared using β-actin as a control. The results are presented as the means ± SD 
(n = 6). ### Significantly different from the control group (p < 0.001). *** Significantly different from the acetaminophen-treated group (p < 0.001)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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is related to the pathogenesis of acetaminophen-induced 
hepatotoxicity [3, 20]. In particular, the increased expres-
sion of pro-inflammatory cytokines is due to the gen-
eration of ROS by NAPQI, causing an inflammatory 
response in the liver [21]. Moreover, ROS are known to 
induce the activity of NF-κB, a transcriptional regula-
tor of pro-inflammatory cytokine expression [22]. In 
this study, we evaluated the preventive effect of DFS on 
acetaminophen-induced pro-inflammatory cytokine 
expression using quantitative PCR (qPCR). As shown in 
Fig. 3A, B, C, the acetaminophen-induced pro-inflamma-
tory cytokine expression level was decreased upon DFS 
administration in a dose-dependent manner. Moreo-
ver, acetaminophen-induced phosphorylation of NF-κB 
p65 and IκBα was also decreased upon DFS administra-
tion in a dose-dependent manner (Fig. 3D). Additionally, 
DFS administration restored the degradation of IκBα, 
reduced by acetaminophen, in a dose-dependent man-
ner. These results suggest that the inhibition of NF-κB 
activity by DFS administration is closely related to the 
suppression of pro-inflammatory cytokine expression. 
NF-κB is known to regulate the inflammatory response 

and increase the expression of related target genes in 
liver tissue damaged by drugs [23, 24]. A previous study 
has reported that inflammatory responses mediated 
by NF-κB are associated with the pathogenesis of acute 
liver injuries caused by acetaminophen overdose [25]. 
Here, we demonstrated that DFS administration down-
regulated the expression of pro-inflammatory cytokines 
by inhibiting NF-κB activation, suggesting that DFS may 
prevent acetaminophen-induced ALI by inhibiting the 
NF-κB pathway.

DFS administration decreased acetaminophen‑induced 
hepatotoxicity by suppressing JNK1/2 pathway
NAPQI induces oxidative stress by mitochondrial ROS 
generation, which increases hepatic injury by increasing 
the continuous activation of JNK1/2 [26, 27]. In addition, 
an overdose of acetaminophen activates JNK1/2, which 
induces an inflammatory response by inducing hepatocel-
lular death [28]. In this study, we examined the preventive 
effect of DFS on acetaminophen-induced JNK1/2 phos-
phorylation by western blot analysis. Figure  4 shows that 
the acetaminophen-induced phosphorylation of JNK1/2 
was inhibited by DFS administration in a dose-dependent 
manner. Moreover, it has been reported that certain herbs 
improve the inhibitory pathway of JNK1/2, which signifi-
cantly attenuates ALI induced by acetaminophen overdose 
[29, 30]. These results suggest that the administration of 
DFS reduced the inflammatory response by inhibiting the 
activation of both JNK1/2 and NF-κB, which ultimately 
prevented acetaminophen-induced ALI.

Conclusion
Many studies have reported that natural products, 
such as extracts of various marine biological resources, 
protect the liver in the early stages of ALI caused by 
acetaminophen. However, few studies have reported 
the hepatoprotective effects of diatom extracts. To 
our knowledge, no studies have reported the hepato-
protective effects of Diatom Frustule Silica (DFS) 
extracted from Melosira nummuloides. In this study, 
we demonstrated the preventive effects of DFS on 
acetaminophen-induced ALI. In conclusion, we suggest 
that DFS administration suppresses acetaminophen-
induced hepatotoxicity and hepatic inflammation and 
ultimately ameliorates ALI.
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