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Abstract

Background Personalized survival prediction is important in gastric cancer patients after gastrectomy based on large
datasets with many variables including time-varying factors in nutrition and body morphometry. One year after
gastrectomy might be the optimal timing to predict long-term survival because most patients experience significant
nutritional change, muscle loss, and postoperative changes in the first year after gastrectomy. We aimed to develop a
personalized prognostic artificial intelligence (AI) model to predict 5 year survival at 1 year after gastrectomy.
Methods From a prospectively built gastric surgery registry from a tertiary hospital, 4025 gastric cancer patients
(mean age 56.1 ± 10.9, 36.2% females) treated gastrectomy and survived more than a year were selected.
Eighty-nine variables including clinical and derived time-varying variables were used as input variables. We proposed
a multi-tree extreme gradient boosting (XGBoost) algorithm, an ensemble AI algorithm based on 100 datasets derived
from repeated five-fold cross-validation. Internal validation was performed in split datasets (n = 1121) by comparing
our proposed model and six other AI algorithms. External validation was performed in 590 patients from other hospi-
tals (mean age 55.9 ± 11.2, 37.3% females). We performed a sensitivity analysis to analyse the effect of the nutritional
and fat/muscle indices using a leave-one-out method.
Results In the internal validation, our proposed model showed AUROC of 0.8237, which outperformed the other AI
algorithms (0.7988–0.8165), 80.00% sensitivity, 72.34% specificity, and 76.17% balanced accuracy. In the external val-
idation, our model showed AUROC of 0.8903, 86.96% sensitivity, 74.60% specificity, and 80.78% balanced accuracy.
Sensitivity analysis demonstrated that the nutritional and fat/muscle indices influenced the balanced accuracy by
0.31% and 6.29% in the internal and external validation set, respectively. Our developed AI model was published on
a website for personalized survival prediction.
Conclusions Our proposed AI model provides substantially good performance in predicting 5 year survival at 1 year
after gastric cancer surgery. The nutritional and fat/muscle indices contributed to increase the prediction performance
of our AI model.
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Introduction

Gastrectomy is a pivotal treatment option which provides the
possibility to cure patients with gastric cancer.1 Diagnosis at
earlier stages, the introduction of perioperative chemother-
apy, and advances in surgical techniques have enabled
clinicians to achieve better patient survival due to this
malignancy.2 As the number of long-term survivors increases,
precision medicine and personal stratification of patient
prognosis are gaining emphasis because the tumour, node,
metastasis (TNM) staging system does not provide accurate
predictions of patient survival during and after treatment.3

Many prognostic models using various nomograms, scor-
ing systems, and artificial intelligence (AI) models, were de-
veloped to predict the overall survival of patients after
surgery.4–7 However, none of these models have been used
extensively in clinical practices due to the limited accuracy
in predicting the survival of patients in various situations.

We hypothesize that one of the main reasons for the inac-
curacy is the limited number of prognostic variables available
to build an adequate model. For simplicity and the uniform
application of the prognostic models, prior models depended
on a few known variables such as the TNM staging system,
age, sex, tumour location, tumour histology, and the extent
of the surgery.3,6,8 However, recent studies demonstrated
that additional variables could affect patient survival in gas-
tric cancer, such as nutrition, sarcopenia, anaemia, and inter-
val changes in these variables between pre-operation and
post-operation.9,10 Based on these findings, we assumed that
a higher accuracy of prognostication could be achieved by an
in-depth analysis of as many variables as possible that could
be easily derived from clinical data and body morphometry
data derived from imaging.

Based on prior research, we postulated that the optimal
timing to predict long-term survival would be 1 year after
gastrectomy when patients are recovered from several
changes derived from surgery and adjusted to new metabolic
balance.9,10 In addition, the time-varying host factors such as
interval change in muscle mass and nutrition between preop-
erative and postoperative period may influence the
long-term survival, thus should be included in prognostic
model.4

A deep learning method might be a better tool than con-
ventional prognostic models such as the Cox-hazard propor-
tional regression model in the construction of a prognostic
model that consists of many variables. Deep learning has an
advantage in handling big clinical data with non-linear ef-
fects, interactions between variables, and time-varying ef-
fects between variables, such as before and after surgery.3

There have been a few encouraging studies in building a
prognostic model for patients treated with gastrectomy using
deep learning AI techniques3,7,11,12; however, there have
been shortcomings in the use of the model, which include in-
sufficient patient cohort size, a limited number of variables

included in the model, exclusion of non-disease-related vari-
ables, and inadequate external validation process of the
model.

In this study, we aimed to develop and validate an AI prog-
nostic model for predicting the 5 year survival at 1 year after
gastric cancer surgery using big data sets (>4000 cases) with
many patient-related variables, including nutrition, skeletal
muscle mass, visceral and subcutaneous adipose tissue mass,
sarcopenia, obesity, co-morbidities, and interval changes in
these variables between before and after surgery as well as
cancer-related variables.

Methods

This study was approved by two institutional review boards:
Asan Medical Center (AMC), Seoul, Korea (IRB No. 2017-
0216) and Ajou University Hospital (AUH), Suwon, Korea
(AJIRB-MED-MDB-22-012). Informed consent was waived in
all participants by IRBs. All methods were performed in accor-
dance with the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis (TRIPOD)
guidelines.13

Patient data for AI model development

We used the comprehensive gastric cancer surgery registry
that was prospectively built at the AMC between 2003 and
2012. This registry contained data from 6229 patients with
63 clinicopathologic variables. Among the total of 6229 pa-
tients, we excluded the deceased within 1 year after surgery
or patients with missed follow-ups (n = 688). In addition, we
excluded 1516 patients who were missing more than 19 var-
iables (30% of clinical variables) or abdominal CT scans at pre-
operative period and 1 year after gastrectomy. A total of
4025 patients’ data (mean age 56.1 ± 10.9, 36.2% females)
from AMC were used in the training of our AI model.

The 63 clinical variables were classified into demographic
variables, physical indices, laboratory results, nutritional in-
dex, fat/muscle indices, surgery-related variables, clinic-
pathological information, and co-morbidities. Table 1 sum-
marizes the 63 clinical variables used in creating our AI
model and the statistical summaries of the clinical variables
in the survived and deceased groups. For the physical index
variables, we used height, weight, and body mass
index (BMI).

The laboratory results included cholesterol, haemoglobin,
albumin, and protein values. For the nutritional index, we
used the nutritional risk index (NRI), which was calculated
based on the formula ((1.519 × serum albumin g/
L) + 0.417 × (present weight/usual weight)) × 100.14

For body morphometry data including fat/muscle indices,
we used an artificial intelligence solution (AID-U™, iIAD Inc,
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Table 1 Clinical variables used for the AI model and statistical summaries of the clinical variables in the survived and deceased groups

No. Characteristics Description
Survived Deceased

P-value(n = 3849) (n = 176)

Demographic variables, mean ± SD or n (%)
1 Age at operation (year) 55.70 ± 11.00 64.65 ± 10.39 <0.001
2 Sex Male 2434 (63.24%) 135 (76.70%) <0.001

Female 1415 (36.76%) 41 (23.30%)
Physical indices, mean ± SD
3 Height (cm) 163.11 ± 8.15 163.22 ± 7.79 0.8620
4 Preoperative weight (kg) 63.75 ± 10.24 61.31 ± 10.50 0.0020
5 Postoperative 1 year weight (kg) 57.84 ± 9.62 56.39 ± 9.13 0.1409
6 Preoperative BMI (kg/m2) 23.90 ± 2.97 22.97 ± 3.28 <0.001
7 1 year postoperative BMI (kg/m2) 21.67 ± 2.72 20.98 ± 3.13 0.0141

Laboratory results, mean ± SD
8 Preoperative cholesterol (mg/dL) 182.95 ± 36.40 168.10 ± 36.88 <0.001
9 1 year postoperative cholesterol (mg/dL) 174.45 ± 33.51 160.42 ± 43.69 <0.001
10 Preoperative haemoglobin (g/dL) 13.51 ± 1.87 12.68 ± 1.99 <0.001
11 1 year postoperative haemoglobin (g/dL) 13.12 ± 1.73 12.18 ± 1.95 <0.001
12 Preoperative albumin (g/dL) 4.03 ± 0.37 3.73 ± 0.45 <0.001
13 1 year postoperative albumin (g/dL) 4.15 ± 0.32 3.76 ± 0.67 <0.001
14 Preoperative protein (g/dL) 6.89 ± 0.53 6.65 ± 0.62 <0.001
15 1 year postoperative protein (g/dL) 7.22 ± 0.46 6.97 ± 0.80 <0.001

Nutritional index, mean ± SD
16 Preoperative nutritional risk index 102.91 ± 5.68 98.37 ± 6.86 <0.001
17 1 year postoperative nutritional risk index 100.78 ± 6.23 93.06 ± 13.12 <0.001

Body morphometry variables with fat/muscle indices, mean ± SD
18 Preoperative subcutaneous fat area (cm2) 119.61 ± 57.23 104.32 ± 47.21 0.0542
19 1 year postoperative subcutaneous fat area (cm2) 80.51 ± 50.12 71.94 ± 49.67 0.1706
20 Preoperative visceral fat area (cm2) 98.75 ± 55.09 106.49 ± 65.06 0.3196
21 1 year postoperative visceral fat area (cm2) 42.61 ± 35.60 45.84 ± 42.84 0.4737
22 Preoperative skeletal muscle area (cm2) 124.77 ± 30.49 119.59 ± 27.79 0.2225
23 1 year postoperative skeletal muscle area (cm2) 119.39 ± 27.52 110.40 ± 25.27 0.0087
24 Preoperative skeletal muscle index adjusted with height2

(SMA/height2, cm2/m2)
46.54 ± 8.68 45.00 ± 8.40 0.2054

25 1 year postoperative skeletal muscle index adjusted with
height2 (SMA/height2, cm2/m2)

44.53 ± 7.92 41.57 ± 7.73 0.0028

26 Preoperative skeletal muscle index adjusted with BMI (SMA/BMI) 5.27 ± 1.17 5.17 ± 1.07 0.5570
27 1 year postoperative skeletal muscle index adjusted with BMI (SMA/BMI) 5.50 ± 1.09 5.33 ± 0.98 0.2723

Surgery-related variables, mean ± SD or n (%)
28 Type of surgery Total gastrectomy 1002 (26.03%) 59 (33.52%) 0.0016

Distal gastrectomy 2843 (73.86%) 116 (65.91%)
Other gastrectomy 3 (0.08%) 0 (0.00%)

29 Type of anastomosis Gastroduodenostomy 2130 (55.34%) 76 (43.18%) 0.0313
Roux-en-Y gastrojejunostomy 235 (6.11%) 8 (4.55%)
Gastrojejunostomy without
jejunojejunostomy

40 (1.04%) 2 (1.14%)

Gastrojejunostomy with
jejunojejunostomy

188 (4.88%) 11 (6.25%)

Total gastrectomy 884 (22.97%) 53 (30.11%)
Others 13 (0.34%) 1 (0.57%)

30 Intent of treatment Curative 3840 (99.77%) 168 (95.45%) <0.001
Palliative 8 (0.21%) 8 (4.55%)

31 History of gastric surgery No 3473 (90.23%) 150 (85.23%) 0.8804
Yes 27 (0.70%) 1 (0.57%)

32 History of endoscopic submucosal dissection No 3368 (87.50%) 146 (82.95%) 0.7584
Yes 133 (3.46%) 5 (2.84%)

33 Operation method Laparoscopy 1480 (38.45%) 36 (20.45%) <0.001
Open 2233 (58.02%) 130 (73.86%)

34 Lymph node dissection Less than D2 1384 (56.25%) 70 (35.23%) 0.1652
D2 2301 (11.95%) 93 (11.93%)

35 Proximal resection margin (cm) 4.52 ± 2.91 4.77 ± 3.09 0.2624
36 Distal resection margin (cm) 7.03 ± 4.91 6.34 ± 5.07 0.0719

Pathologic variables, mean ± SD or n (%)
37 Cancer stage* Ia 2165 (12.47%) 62 (15.91%) <0.001

Ib 460 (7.90%) 21 (9.66%)
IIa 480 (5.17%) 28 (6.82%)
IIb 304 (4.29%) 17 (11.36%)
IIIa 199 (1.84%) 12 (4.55%)
IIIb 165 (0.10%) 20 (4.55%)
IIIc 71 (35.96%) 8 (39.77%)
IV 4 (59.78%) 8 (52.84%)

(Continues)
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Table 1 (continued)

No. Characteristics Description
Survived Deceased

P-value(n = 3849) (n = 176)

38 Number of tumours 1.05 ± 0.21 1.07 ± 0.26 0.1034
39 Tumour size (cm) 4.07 ± 2.62 5.21 ± 3.58 <0.001
40 Number of metastatic lymph nodes 1.14 ± 3.11 3.06 ± 6.73 <0.001
41 Number of retrieved lymph nodes 32.32 ± 13.77 31.71 ± 13.08 0.5675
42 The extranodal extension of the metastatic

lymph node (pathological findings)
Negative 684 (17.77%) 38 (21.59%) 0.0412
Positive 262 (6.81%) 25 (14.20%)

43 Diameter of the extranodal extension of the
metastatic lymph node (mm)

1.63 ± 1.34 2.46 ± 2.00 0.0356

44 Lymphovascular invasion Negative 2956 (76.80%) 114 (64.77%) <0.001
Positive 867 (22.53%) 61 (34.66%)

45 T stage* T1 2395 (62.22%) 70 (39.77%) <0.001
T2 492 (12.78%) 22 (12.50%)
T3 680 (17.67%) 56 (31.82%)
T4 276 (7.17%) 27 (15.34%)

46 N stage* N0 2884 (74.93%) 110 (62.50%) <0.001
N1 430 (11.17%) 16 (9.09%)
N2 321 (8.34%) 19 (10.80%)
N3 210 (5.46%) 30 (17.05%)

47 Perineural invasion Negative 3065 (79.63%) 112 (63.64%) 0.2965
Positive 701 (18.21%) 58 (32.95%)
Not evaluated 15 (0.39%) 1 (0.57%)

48 Gross appearance of advanced gastric cancer (AGC) Borrmann type 1 39 (1.01%) 2 (1.14%) <0.001
Borrmann type 2 262 (6.81%) 23 (13.07%)
Borrmann type 3 921 (23.93%) 63 (35.80%)
Borrmann type 4 45 (1.17%) 7 (3.98%)
Unclassified 59 (1.53%) 2 (1.14%)

49 Gross appearance of early gastric cancer (Type 1 to 3) Type I 95 (2.47%) 2 (1.14%) <0.001
Type II 2170 (56.38%) 62 (35.23%)
Type III 102 (2.65%) 5 (2.84%)

50 Tumour histology Papillary adenocarcinoma 23 (0.60%) 0 (0.00%) 0.0064
Well-differentiated tubular
adenocarcinoma

389 (10.11%) 13 (7.39%)

Moderately-differentiated
tubular adenocarcinoma

956 (24.84%) 58 (32.95%)

Poorly-differentiated
tubular adenocarcinoma

1402 (36.43%) 54 (30.68%)

Signet-ring cell carcinoma 576 (14.96%) 16 (9.09%)
Mucinous adenocarcinoma 59 (1.53%) 3 (1.70%)
Others 60 (1.56%) 3 (1.70%)

51 Lauren Classification Intestinal 1615 (41.96%) 84 (47.73%) 0.2198
Diffuse 1454 (37.78%) 53 (30.11%)
Mixed 457 (11.87%) 21 (11.93%)
Indeterminate 27 (0.70%) 0 (0.00%)

52 Tumour location† Upper third 570 (14.81%) 34 (19.32%) 0.1020
53 Middle third 845 (21.95%) 31 (17.61%) 0.1710
54 Lower third 2458 (63.86%) 115 (65.34%) 0.6949

Co-morbidities, n (%)
55 Diabetes mellitus 384 (9.98%) 35 (19.89%) <0.001
56 Hypertension 924 (24.01%) 58 (32.95%) 0.0069
57 Chronic viral hepatitis 146 (3.79%) 12 (6.82%) 0.0433
58 Liver cirrhosis 25 (0.65%) 3 (1.70%) 0.0997
59 Tuberculosis 191 (4.96%) 19 (10.80%) <0.001
60 Myocardial infarction 10 (0.26%) 3 (1.70%) <0.001
61 Cerebrovascular accident 63 (1.64%) 13 (7.39%) <0.001
62 Valvular heart disease 5 (0.13%) 0 (0.00%) 0.6324
63 Chronic obstructive pulmonary disease 13 (0.34%) 2 (1.14%) 0.0891
64 Asthma 28 (0.73%) 4 (2.27%) 0.0240
65 Chronic renal failure 6 (0.16%) 2 (1.14%) 0.0043

Abbreviations: SD, standard deviation; BMI, body mass index; SMA, skeletal muscle area.
*Tumour stage according to AJCC Cancer Staging Manual 8th Edition.
†Duplicated count is allowed. For example, we checked all locations for a diffuse Bormann type IV cancer which was in the upper third,
middle third, and lower third.
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Seoul, Korea) to measure subcutaneous fat area (SFA), vis-
ceral fat area (VFA) and skeletal muscle area (SMA) at L3 ver-
tebral body level on abdominal CT scans. The skeletal muscle
mass index (SMI) was calculated by the SMA divided by the
height squared (SMA/height2) or by the adjusted body mass
index (SMA/BMI).15

For the surgical information, we used the type of gastrec-
tomy, the type of anastomosis, treatment intention, history
of previous gastric surgery or endoscopic submucosal dissec-
tion (ESD), operation method (open vs. laparoscopic ap-
proach), extent of lymph node dissection, and length of prox-
imal and distal resection margins.

For clinicopathological data, we used cancer stage, number
of tumours, tumour size, number of metastatic lymph nodes,
number of retrieved lymph nodes, the presence and diameter
of extranodal extension of a metastatic lymph node, the di-
ameter of an extranodal extension of a metastatic lymph
node, the presence of lymphovascular invasion and perineu-
ral invasion by tumour cells, gross appearance of advanced
gastric cancer and early gastric cancer, pathological tumour
type, Lauren classification, and tumour location.16–18

For co-morbidities, we included diabetes mellitus, hyper-
tension, chronic active hepatitis, liver cirrhosis, tuberculosis,
myocardial infarction, cerebrovascular accidents, valvular
heart disease, chronic obstructive pulmonary disease,
asthma, and chronic renal failure in the input variables.

The effects of interval changes in variables between preop-
erative and 1 year postoperative records were recorded as
time-varying measurements. Changes in physical indices, lab-
oratory results, the nutritional index, and fat/muscle indices,

specifically weight, BMI, cholesterol, haemoglobin, albumin,
protein, NRI, SFA, SMA, SMI, and SMA/BMI, were calculated
as the time-varying indices.

Patient data for external validation

A total of 590 patients’ data (mean age 55.9 ± 11.2, 37.3% fe-
males) were used as an external validation for our AI model.
The data was collected based on a comprehensive gastric
cancer registry prospectively built at the AUH between 2010
and 2012. In the AUH dataset, only 28 of the 63 clinical vari-
ables were available. Table 2 summarizes the available clinical
variables from the AUH dataset. The AUH’s clinical variables
did not include all the co-morbidities. Only the cancer stage
was considered in the clinic-pathological information. The
surgical information only included the types of surgery and
anastomosis. The other clinical variables such as age/sex,
physical indices, laboratory results, and body morphometry
data with fat/muscle indices were all measured, except for
protein values (Table S1). It was challenging but worthwhile
to evaluate the developed AI model only using a fraction of
the clinical variables, which mostly were age/sex, physical in-
dices, laboratory information, and fat/muscle indices.

Final variables with derived time-varying variables

For the AI model to predict the 5 year survival, 63 clinical var-
iables were used. In addition to the 63 variables, the differ-

Table 2 Clinical variables used for external validation of our AI model

No. Clinical variables No. Clinical variables

Demographic variables 20 Preoperative skeletal muscle area (cm2)
1 Age at operation (year) 21 1 year postoperative skeletal muscle area (cm2)
2 Sex Male 22 Preoperative skeletal muscle index (cm2/m2)

Female 23 1 year postoperative skeletal muscle index (cm2/m2)
Physical indices 24 Preoperative skeletal muscle index
3 Height (cm) 25 1 year postoperative skeletal muscle index
4 Preoperative weight (kg) Surgery-related variables
5 1 year postoperative weight (kg) 26 Type of surgery Total gastrectomy
6 Preoperative BMI Distal gastrectomy
7 1 year postoperative BMI Other gastrectomy

Laboratory results 27 Type of anastomosis Gastroduodenostomy
8 Preoperative cholesterol (mg/dL) Roux-en-Y gastrojejunostomy
9 1 year postoperative cholesterol (mg/dL) Gastrojejunostomy without jejunojejunostomy
10 Preoperative haemoglobin (g/dL) Gastrojejunostomy with jejunojejunostomy
11 1 year postoperative haemoglobin (g/dL) Total gastrectomy
12 Preoperative albumin (g/dL) Others
13 1 year postoperative albumin (g/dL) Pathologic variables

Nutritional index 28 Cancer stage Ia
14 Preoperative nutritional risk index Ib
15 1 year postoperative nutritional risk index IIa

Body morphometry variables with fat/muscle indices IIb
16 Preoperative subcutaneous fat area (cm2) IIIa
17 1 year postoperative subcutaneous fat area (cm2) IIIb
18 Preoperative visceral fat area (cm2) IIIc
19 1 year postoperative visceral fat area (cm2) IV
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ences in values and percentages between the preoperative
and 1 year postoperative weight, BMI, cholesterol,
haemoglobin, albumin, protein, NRI, SFA, SMA, SMI, and
SMA/BMI were considered. The difference in values was cal-
culated by subtracting the 1 year postoperative measure-
ment from the preoperative value. The percent difference
was calculated by dividing the difference in values by the pre-
operative value. Using the difference in values, the percent
difference in values, and the one-hot encoded categorical
values, 26 new variables were derived. Thus, a total of 89 var-
iables were used for the AI model (Table S2). The external
validation data had 28 variables available, which was ex-
tended to 54 variables (Table S2).

Data split and cross-validation

In this study, our data is composed of training, internal valida-
tion, and external validation data. The AMC data was split
into training and internal validation data with a ratio of 8:2
in a stratified fashion. The internal validation dataset was
used only for an independent test of the developed AI model
and not for training. In addition, the whole AUH dataset was
used only for external validation and never used in the model
training. Table S3 summarizes the datasets for training, inter-
nal validation, and external validation.

A five-fold cross-validation was performed and repeated
20 times to confirm the model’s generalization ability using
the training data. The training dataset (n = 3220) was first
randomly shuffled and divided into five equal groups in a
stratified manner. Subsequently, four groups were selected
for training the model, and the remaining group was used
for testing. This process was repeated five times by changing
which group was the testing data. The whole process was re-
peated 20 times. The finalized AI model was based on the re-
peated five-fold cross-validation and is described in subse-
quent sections. We evaluated the performance of the AI
model using the internal validation data and the external val-
idation data.

Preprocessing

There were missing variables in the AMC (training and inter-
nal validation data) and AUH (external validation data)
datasets (Table S4). The average and standard deviations of
the missing data in the AMC and AUH datasets were
26.7 ± 30.4%, and 0.1 ± 0.1%, respectively. Note that the per-
centages of missing data for AUH were considered only for
the available variables summarized in Table 2. The missing
variable in the training data was replaced with the missing
variable’s mean from across the training, internal validation,
and external validation datasets. The same variable replace-

ment method was also applied to replace the unavailable var-
iables in the AUH dataset.

A dataset standardization was performed and is a common
requirement for machine learning estimators. The standardi-
zation changes the data distribution of each variable with a
mean of zero and a standard deviation of one using the equa-
tion:

Datastandard ¼ Data � mean trainð Þ
SD trainð Þ ; (1)

wheremean trainð Þ and SD trainð Þ are the mean and standard
deviation of each variable in the training dataset. The stan-
dardization was applied to the training, internal validation,
and external validation datasets.

Multi-tree extreme gradient boosting

The extreme gradient boosting (XGBoost) model was adopted
to develop the AI model to predict the 5 year survival.19 In
this study, we trained the XGBoost model using the five-fold
cross-validation method and repeated this 20 times using
the training data. Then, the results were ensembled into
100 trees with soft voting. Figure S1 illustrates the ensemble
AI model, based on the combination of the 100 trees pro-
duced by the XGBoost algorithms. Each tree was produced
from the XGBoost algorithm by setting the maximum depth
to 2, the learning rate to 0.1, the number of tree estimators
to 50, the value of the regularization parameter α to 0.8,
the fraction of observations to 0.2, and the fraction of col-
umns to 0.8.

In this study, the number of deceased patients was much
lower than the number of survived patients. Thus, for each
tree from XGBoost, we up-sampled the deceased patient data
using the synthetic minority over-sampling technique
(SMOTE), aiming to prevent the model’s bias toward the sur-
vived patient data by balancing the data in the two groups.
After modelling the multi-tree XGBoost model, the contribu-
tion of each of the 89 variables to the prediction of survival
was investigated via a variable importance analysis. The re-
peated five-fold cross-validation provided 100 sets of impor-
tant variables. We then averaged and normalized the sets
of important variables in order that the values from each
classifier were in the range from zero to one.

To compare the performance of our proposed predictive AI
model, we separately trained the following models, random
forest (RF),20 gradient boosting machine (GBM),21 adaptive
boosting (Adaboost),22,23 light gradient boosting machine
(LightGBM),24 categorical boosting (CatBoost),25 and ensem-
ble models including XGBoost.19 The implementation and
analysation of the machine learning models was done using
Imbalanced-learn (version 0.8.1), NumPy (version 1.17),
Scikit-learn (version 0.24.2), Pandas (version 0.24.2),
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Matplotlib (version 3.1.0), XGBoost (version 0.90), and
LightGBM (version 3.3.0).

Performance evaluation of AI models

The performance of our AI model’s prediction was evaluated
and compared based on repeated K-fold cross-validation
using the isolated testing data. The model was additionally
evaluated with the external validation data. Sensitivity, spec-
ificity, accuracy, and balanced accuracy metrics were evalu-
ated and defined as:

Sensitivity ¼ TP
TPþ FN

; (2)

Specificity ¼ TN
TN þ FP

; (3)

Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

; (4)

BalancedAccuracy ¼ Sensitivity þ Specificity
2

; (5)

True positive (TP), true negative (TN), false positive (FP), and
false negative (FN) were used in the evaluations. The bal-
anced accuracy evaluated the imbalance between the sur-
vived and the deceased groups. In addition, we computed
the area under the receiver operating characteristics
(AUROC).

Sensitivity analysis

In addition to developing an AI model, we included variables
corresponding to pre- and post-operative nutritional and
body morphometry data such as NRI, SFA, VFA, SMA, SMI,
and SMA/BMI. To investigate the effect of these variables,
we adopted a leave-one-out method by excluding the pre-
and post-operative nutritional and fat/muscle indices from

the variables and repeated the training of the AI model. Sub-
sequently, we evaluated the prediction performance based
on cross-validation, internal validation, and external valida-
tion data.

Public website deployment

We deployed the AI model on a public web server (http://ai-
research.co.kr/survival) through Amazon Web Services,
which provides a secure, durable, and scalable service. After
accessing the website, a user enters the clinical variables,
which are encoded by the website’s server, and users can im-
mediately obtain the predicted 5 year survival. There is no
need to enter private information other than the clinical var-
iables. The entered information is immediately deleted after
the prediction is derived, so there is no risk of information ex-
posure. Code is available at https://github.com/
HeewonChung92/Gastric_Cancer_Survival.

Results

Variable importance rankings

Table 3 shows the ranked averages of the important variables
using XGBoost via the repeated K-fold cross-validation
method. The results showed that 25 variables contributed
to the prediction of survival. Among the variables, age had
the highest importance value, followed by preoperative albu-
min, preoperative NRI, T stage, and the percent difference of
haemoglobin. In addition, the results showed that
co-morbidities and surgical information did not contribute
to the prediction of survival. Furthermore, among the top
25 variables, 15 were related to the pre-and postoperative
variables, including physical indices, laboratory results, the
nutritional index, and fat/muscle indices. These pre- and

Table 3 Variable importance and percentage of missing data

Variable name XGBoost Missing data (%) Variable name XGBoost Missing data (%)

Age 1.0000 0.00 1 year postoperative protein 0.3461 3.43
Preoperative albumin 0.7522 0.00 Postoperative 1 year cholesterol 0.3358 3.40
Preoperative NRI 0.6870 0.05 Perineural invasion-negative 0.3167 1.84
T stage 0.5638 0.17 Early gastric cancer II 0.2919 39.50
Difference in the percentage of
haemoglobin

0.4594 1.96 Diameter of the extranodal
extension of the metastatic lymph node

0.2509 96.20

Cancer stage 0.4536 0.02 Preoperative weight 0.2360 0.05
1 year postoperative NRI 0.4533 53.91 Difference in the percentage of albumin 0.2351 3.43
Tumour size 0.4228 0.15 Preoperative BMI 0.2347 0.20
Number of metastatic lymph nodes 0.4087 0.12 Difference in albumin 0.2328 3.43
Difference in haemoglobin 0.3988 1.96 Perineural invasion-positive 0.2142 1.84
1 year postoperative SMI 0.3873 69.89 Sex 0.2007 0.00
1 year postoperative VFA 0.3843 69.84 Difference in nutritional risk index 0.0476 53.91
1 year postoperative albumin 0.3545 3.43
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postoperative variables indicated that the patient’s physical,
nutritional, fat/muscle status, and laboratory results before
and after the gastric cancer surgery were important variables
in predicting the survival of the patients. In addition, it should
be noted that the 1 year postoperative NRI, SMI, VFA, and the
difference in NRI were included in the top 25 variables even
though the percentage of missing data was high: 53.9% for
NRI, 69.9% for SMI, 69.8% for VFA, and 53.9% for the differ-
ence in NRI.

K-fold cross-validation results

Based on the repeated five-fold cross-validation, the AI model
shows a sensitivity of 76.77%, a specificity of 75.26%, an ac-
curacy of 75.32%, a balanced accuracy of 76.01%, and an
AUROC of 0.8118 (Table 4). The results showed that the AI
model provided higher values of sensitivity, specificity, accu-
racy, balanced accuracy, and AUROC than those from any
other models, including RF, GBM, AdaBoost, LightGBM,
CatBoost, and Ensemble.

Internal validation results

Using the isolated split data (n = 1121) only for internal vali-
dation, the AI model showed a sensitivity of 80.00%, a spec-
ificity of 72.34%, an accuracy of 72.67%, a balanced accuracy
of 76.17%, and an AUROC of 0.8237. Table 5 summarizes the
internal validation data results in comparison with other ma-
chine learning algorithms. The results showed that our AI
model provided higher values of balanced accuracy and
AUROC than those from any other model.

External validation results

With the independent external validation data (n = 590), our
AI model showed a sensitivity of 86.96%, a specificity of
74.60%, an accuracy of 75.08%, a balanced accuracy of
80.78%, and an AUROC of 0.8903 (Table 6). The overall accu-
racy increased with the external validation data compared

with the internal validation data with a change in sensitivity
from 80.00% to 86.96%, specificity from 72.34% to 74.60%,
accuracy from 72.67% to 75.08%, balanced accuracy from
76.17% to 80.78%, and AUROC from 0.8237 to 0.8903, even
though the external validation data only had 58 extended
variables (28 original variables), compared with a total of 89
variables included in training the model.

Although there were fewer variables in the external valida-
tion data, there were enough variables with high importance
values. Among the top 25 variables in the training dataset,
the external validation dataset included 17 variables. Specifi-
cally, the external validation data included six variables
among the top seven predictive variables, including age, pre-
operative albumin, preoperative NRI, the difference in the
percentage of haemoglobin, cancer stage, and 1 year postop-
erative NRI. The external validation dataset had less pre- and
postoperative missing data than the internal validation
dataset. More specifically, among the top 25 variables in
the training and internal validation datasets, the percentages
of missing 1 year postoperative data for NRI, SMI, VFA, and
the difference in NRI were 53.9%, 69.9%, 69.8%, and 53.9%,
respectively. On the other hand, in the external validation
dataset, the percentages of missing 1 year postoperative data
for NRI, SMI, VFA, and the difference in NRI were only 0.2%,
0.0%, 0.0%, and 0.2%, respectively. The lower number of

Table 4 Repeated K-fold cross-validation results in comparison with other machine learning algorithms (mean ± standard deviation)

Cross-validation results (n = 4025)

Model Sensitivity Specificity Accuracy Balanced Accuracy AUROC

RF 0.7451 ± 0.1164 0.7079 ± 0.1152 0.7096 ± 0.1059 0.7265 ± 0.0313 0.7741 ± 0.0348
GBM 0.7531 ± 0.1180 0.7266 ± 0.1122 0.7276 ± 0.1032 0.7398 ± 0.0322 0.7846 ± 0.0355
AdaBoost 0.7140 ± 0.1188 0.7475 ± 0.1190 0.7462 ± 0.1100 0.7307 ± 0.0400 0.7844 ± 0.0435
LightGBM 0.7545 ± 0.1302 0.7197 ± 0.1302 0.7213 ± 0.1200 0.7371 ± 0.0371 0.7846 ± 0.0442
CatBoost 0.7446 ± 0.1045 0.7355 ± 0.0944 0.7359 ± 0.0865 0.7401 ± 0.0334 0.7932 ± 0.0376
Ensemble 0.7550 ± 0.1213 0.7242 ± 0.1200 0.7256 ± 0.1104 0.7396 ± 0.0334 0.7921 ± 0.0361
XGBoost 0.7677 ± 0.0689 0.7526 ± 0.0678 0.7532 ± 0.0622 0.7601 ± 0.0159 0.8118 ± 0.0147

Abbreviations: RF, random forest; GBM, gradient boosting machine; AdaBoost, adaptive boosting; LightGBM, light gradient boosting ma-
chine; CatBoost, categorical boosting.

Table 5 Internal validation results in comparison with other machine
learning algorithms

Model Sensitivity Specificity Accuracy
Balanced
accuracy AUROC

RF 0.7429 0.7130 0.7143 0.7279 0.8023
GBM 0.7714 0.7416 0.7429 0.7565 0.8165
AdaBoost 0.7143 0.7455 0.7441 0.7299 0.7988
LightGBM 0.7714 0.7325 0.7342 0.7519 0.8140
CatBoost 0.7143 0.7909 0.7876 0.7526 0.8024
Ensemble 0.7143 0.7857 0.7826 0.7500 0.8160
Ensemble
multi-tree
XGBoost

0.8000 0.7234 0.7267 0.7617 0.8237

Abbreviations: RF, random forest; GBM, gradient boosting ma-
chine; AdaBoost, adaptive boosting; LightGBM, light gradient
boosting machine; CatBoost, categorical boosting.
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missing data in the pre- and postoperative variables im-
proved the predictive model’s performance.

Sensitivity analysis for effect of the nutritional and
fat/muscle indices

Table 7 summarizes the sensitivity analysis results from this
new AI model trained without the nutritional and fat/muscle
indices in comparison with our AI model. The difference (diff)
represents the accuracy metrics value from our AI model
subtracted from the new model without nutritional and fat/
muscle indices. The results showed that the balanced accu-
racy and AUROC decreased by 1.70% and 0.0223, respec-
tively, using the cross-validation dataset. Using the internal
validation dataset, the balanced accuracy and AUROC de-
creased by 0.31% and 0.0076, respectively. Using the external
validation dataset, the balanced accuracy and AUROC de-
creased by 6.29% and 0.0213, respectively. These results indi-
cated that the nutritional and fat/muscle indices improved
the prediction performance of our AI model.

Website deployment

The web application provides the 5 year survival probability
at 1 year after gastric surgery, as shown in Figure 1. A user in-
puts quantified 89 clinical variables (Figure 1(A)), and the
user is provided with a 5 year survival prediction (Figure 1
(B)).

Discussion

Our 5 year predictive AI model, multi-tree XGBoost, was able
to predict 5 year survival at 1 year after gastric surgery with
high accuracy with data from two medical institutions. The

internal validation dataset, data from AMC, had a balanced
accuracy of 76.17% and an AUROC of 0.8237. The external
validation dataset, data from AHU, had a balanced accuracy
of 80.78% and an AUROC of 0.8903.

We complied our study datasets to have several unique
characteristics. First, we incorporated as many variables in
the model as possible, initially 63 variables, to reflect modern
clinical practices and patient characteristics. Second, we in-
corporated variables that exceeded routine clinicopathologi-
cal data, including nutritional and fat/muscle indices, such
as NRI, SFA, VFA, SMA, SMI, and SMA/BMI. Third, both preop-
erative and postoperative variables were included in our
model to reflect time-varying effects in variables. Simply
using preoperative or postoperative variables alone might
not reflect the physiological changes from gastrectomy. Fi-
nally, we trained our AI model using large, well-curated
datasets. Thus, data from 4025 patients were included from
high-volume specialty centres. To the best of our knowledge,
this study used the largest cohort for an AI predictive model
for patients with gastric cancer treated with gastrectomy; this
enabled us to build an AI model with high prediction
accuracy.

In this study, we adopted the Ensemble XGBoost model.
The XGBoost model is a highly recognized machine learning
approach for its efficiency and accuracy, and as one of the
boosting algorithms, it integrates multiple tree models and
delivers an improved prediction accuracy. We applied ensem-
ble learning with a soft voting algorithm to enhance predic-
tion accuracy. We postulated that our technical approach
was well suited for an AI prediction model with many vari-
ables. The prediction accuracy of our AI model compared
with other AI algorithms, including RF, GBM, AdaBoost,
LightGBM, CatBoost, and Ensemble, our Ensemble XGBoost
model yielded the highest prediction accuracy.

Interestingly, part of our study results demonstrated the
effect of nutritional and fat/muscle indices on patient survival
using the leave-one-out sensitivity analysis method. When

Table 6 External dataset results

Model TN FP FN TP Sensitivity Specificity Accuracy Balanced accuracy AUROC

Ensemble multi-tree XGBoost 423 144 3 20 0.8696 0.7460 0.7508 0.8078 0.8903

Abbreviations: TN, true negative; FP, false positives; FN, false negatives; TP, true positives.

Table 7 Performance summarization when nutritional and fat/muscle indices are excluded

Datasets

Sensitivity Specificity Accuracy Balanced accuracy AUROC

value diff* value diff value diff value diff value diff

CV 0.7861 �0.0184 0.7002 �0.0524 0.7041 �0.0491 0.7431 �0.0170 0.7895 �0.0223
Internal validation data 0.8000 0.0000 0.7173 �0.0061 0.7204 �0.0063 0.7586 �0.0031 0.8161 �0.0076
External validation data 0.7826 �0.0870 0.7072 �0.0388 0.7102 �0.0406 0.7449 �0.0629 0.8690 �0.0213
*diff: the value from our AI model minus the value from the model without nutritional and fat/muscle indices.
Abbreviations: AUROC, area under the receiver operating characteristics; CV, cross-validation.
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we excluded each of the pre- and postoperative nutritional
and fat/muscle indices, the prediction accuracy decreased in
both the internal validation dataset and external validation
dataset. In addition, the feature importance analysis showed
that most nutritional and fat/muscle indices were the rela-
tively high contributors in predicting the 5 year survival: pre-
operative NRI (3rd), 1 year postoperative NRI (7th), 1 year
postoperative SMI (11th), 1 year postoperative VFA (12th),
1 year postoperative protein (14th), postoperative 1 year
cholesterol (15th), preoperative weight (19th), preoperative
BMI (21th) and difference in nutritional risk index (25th)
among the 64 variables. These results clearly showed that in-
corporating the nutritional and fat/muscle indices improved
the prediction performances of the AI model. Previous stud-
ies reported that prolonged malnutrition early in life in-
creased the risk of gastric cancer mortality later in life.26

The majority of patients with gastric cancer experienced can-
cer anorexia-cachexia syndrome with weight loss, reduced
appetite, fatigue, and weakness.27 In addition, it was re-
ported that malnutrition before and after gastrectomy signif-
icantly and adversely affected overall survival.28 Our study is
the first to use the pre- and postoperative nutritional and
fat/muscle indices in machine learning algorithms, whereas
previous studies have only performed an analysis based on
patient statistics.26–31

The main causes of post-gastrectomy death vary along the
time after gastrectomy.32 Of these, our AI model is intended
to predict long-term survival at 1 year after gastrectomy
using big data sets including patients’ status of nutrition
and body morphometry. Our AI model does not intend to
predict early post-gastrectomy mortality which is mainly con-
tributed to old age, metabolic/nutritional imbalance, tumour
recurrence, and postoperative complications.33,34 Therefore,
we excluded all patients who deceased within 1 year after
gastrectomy and did not include postoperative complications
in our model.

In our AI model, we did not include the surgeon factors
such as extent of experience and surgical skill level. As a
high-volume centre, we perform about 1800 gastrectomy
per year. We have put huge efforts to standardize the opera-
tion procedures as well as patient management processes, as
reported previously.35 Thus, we did not consider the surgeon
factor in our AI model.

Our model is available as a web toolkit, so anyone can use
our AI model. Currently, the application does not store any in-
formation entered by users. However, we plan to store infor-
mation entered by users upon agreement to improve the AI
model via a real-time learning process. We will use our devel-
oped web application to acquire additional data and perform
real-time training to update the model.

Though our AI model demonstrated high accuracy in
predicting the 5 year survival, several limitations exist. First,
our AI model was trained using data from a single
high-volume specialty gastrectomy centre. Because our insti-

tution performs approximately 1800 gastric surgeries every
year, our patients’ survival might exceed those of other insti-
tutions or clinical researchers. In addition, we validated our AI
model using a single external institution that is also a
high-volume specialty gastrectomy centre. Next, our data in-
cluded only Korean patients. In future studies, we will train
and apply our AI model to more datasets comprising more di-
verse subjects. To overcome these generalization issues, it
may be necessary to validate our AI model using external
datasets, such as data from various medical institutions. In
addition, we plan to further develop our AI model using
extended variables. Finally, the training dataset had a high
percentage of missing. Notably, most pre- and postoperative
variables corresponding to nutritional and fat/muscle indices
had 70% or higher missing data. Nevertheless, we achieved
high accuracy which might be attributed to the imputation
method to replace missing values in the training dataset. In
general, accuracy is higher on imputed dataset as compared
with incomplete dataset.36 In the future, it is important to
collect more data with as much information as possible.

In conclusion, we developed an AI model to predict the
5 year survival probability in gastric cancer patients treated
with gastrectomy 1 year after surgery using a large training
cohort and many variables, including pre- and postoperative
nutritional and fat/muscle indices. Our performance in
predicting 5 year survival is overall accurate and may be help-
ful for healthcare providers and patients to increase survival
after gastrectomy.
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