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A B S T R A C T   

Protein folding is a complex physicochemical process whereby a polymer of amino acids samples numerous 
conformations in its unfolded state before settling on an essentially unique native three-dimensional (3D) 
structure. To understand this process, several theoretical studies have used a set of 3D structures, identified 
different structural parameters, and analyzed their relationships using the natural logarithmic protein folding 
rate (ln(kf)). Unfortunately, these structural parameters are specific to a small set of proteins that are not capable 
of accurately predicting ln(kf) for both two-state (TS) and non-two-state (NTS) proteins. To overcome the lim
itations of the statistical approach, a few machine learning (ML)-based models have been proposed using limited 
training data. However, none of these methods can explain plausible folding mechanisms. In this study, we 
evaluated the predictive capabilities of ten different ML algorithms using eight different structural parameters 
and five different network centrality measures based on newly constructed datasets. In comparison to the other 
nine regressors, support vector machine was found to be the most appropriate for predicting ln(kf) with mean 
absolute differences of 1.856, 1.55, and 1.745 for the TS, NTS, and combined datasets, respectively. Furthermore, 
combining structural parameters and network centrality measures improves the prediction performance 
compared to individual parameters, indicating that multiple factors are involved in the folding process.   

1. Introduction 

The "functional native structure" of a protein is crucial for under
standing the biological functions of proteins, as well as for forming 
complexes with other molecules or proteins for structural and regulatory 
processes. The mechanisms of protein folding remain one of the most 
challenging problems to solve; few of these mechanisms actually un
tangle the second half of the genetic code. Protein folding occurs in a 
hierarchical order to produce a stable native structure. Practically, a 
protein domain attempting to find the native state by randomly 
traversing all possible interactions would require more time than the 
entire universe to complete. However, in reality, most protein domains 
spontaneously fold into their native state in the order of 10− 6–10− 1 s. 
Protein folding refers to how unfolded proteins are folded into their 
native form, and this process is studied via thermodynamics and kinetics 

[1,2]. 
There are two main characteristics of protein folding: the first is the 

kinetic order, which determines whether the protein reaches its native 
structure through one intermediate or multiple intermediates [5]; the 
second is the rate constant, which varies from nanoseconds to hours, 
depending on the protein length [6]. In general, smaller proteins tend to 
fold faster than larger ones [3,4]. Although smaller proteins with 100 or 
fewer amino acids have simple two-state (TS) kinetics [5,6], larger 
proteins with over 100 amino acids have non-two-state (NTS) kinetics 
with stable intermediates [7]. The rule generally holds true, but changes 
in the experimental conditions can cause it to work in a different way. 
Furthermore, failure to fold into the native state results in misfolded or 
aggregated proteins, which can lead to several neurodegenerative dis
orders including Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease, and cystic fibrosis [9]. 
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Protein folding refers to the process of bringing an unfolded protein 
domain into its native, compact three-dimensional (3D) structure [11, 
12]. In the last two decades, predicting the protein-folding rate from its 
linear chain sequence has become a popular field of research. Further
more, a strong correlation was established between the folding rate and 
native structure. Accordingly, topology packing has proven to be the 
most reliable component for understanding protein folding and struc
ture. Using a simple optimistic method, extensive research has found 
that protein folding rate is related to structural factors [13–15]. Owing 
to their unique perspective, protein folding correlations between protein 
folding rate and its fundamental properties have been studied for more 
than two decades [5,13,16,17]. Nevertheless, various studies based on 
protein 3D structures have also been performed to help understand 
protein folding rates. 

Identifying novel structural parameters using 3D structures and 
studying their linear relationship with the logarithmic folding rate (ln 
(kf)) gained popularity in the late 2000s. Plaxco and colleagues [18] 
proposed the first structure-based parameter, namely the relative con
tact order (RCO) of TS proteins and their relationship with ln(kf). This 
study inspired several researchers to develop various structural param
eters based on TS, namely the absolute contact order (ACO) [19], chain 
length (Nres) [20], size-modified contact order (SMCO) [19], native state 
geometry (cliquishness) [21], amino acid properties (Pav) [17], effective 
chain length (Leff) [22], long-range order (LRO) [14], effective contact 
order (ECO) [23], combination of contact order and stability [27], to
pological properties (Lpre, Lpost) [24], fraction of local contacts (FLCO), 
number of sequence-distant native pairs (Qd) [6], chain topology 
parameter (CTP) [25], total contact distance (TCD) [15], and long-range 
contact order (LRCO) [26]. 

Kamagata et al. [27] proposed the first structural parameter based on 
NTS proteins, called non-local contact clusters, which showed a strong 
correlation with ln(kf). Generally, the above-mentioned structural pa
rameters are derived from a small set of TS and NTS proteins. Notably, 
none of these parameters are suitable for accurately identifying ln(kf) for 
both types of proteins. Consequently, machine learning (ML)-based 
methods have been developed using a minimal amount of data [28], but 
they have not been able to explain possible folding mechanisms. 

In this study, we constructed a TS and NTS dataset based on a recent 
PFDB database. Firstly, the relationship of eight structural parameters 
(CTP, TCD, ACO, RCO, FLCO, LRO, LRCO, and Nres) with TS, NTS, and 
combined (TS + NTS) were analyzed to determine whether the reported 
performance of each parameter is still relevant when applied to a larger 
dataset. Second, large-scale machine learning regressors (10 different 
algorithms) were employed to predict ln(kf) using structural parameters 
and network-based parameters, including betweenness centrality (CB), 
betweenness centrality of an edge (CE), eigen centrality (EC), closeness 
centrality (CC), and degree centrality (CD). The results indicate that 
combining both structural and network parameters with support vector 
machine (SVM) achieves the best performance regardless of the dataset, 
indicating that several factors contribute to the prediction of ln(kf), in 
contrast to the specific structural parameters mentioned in previous 
studies. 

2. Methods 

2.1. Datasets 

Recently, Manavalan et al. [29] reported a larger collection of TS and 
NTS. This study utilized the PFDB database, which contains 141 globular 
proteins, and their ln(kf) values were reported at 25 ◦C. Of the 141 
proteins, 89 belonged to the TS and the remaining 52 belonged to the 
NTS. In terms of structural classes, all- α: 24; all-β: 42; α/ β or α+ β: 23 
for TS proteins; and all-α: 10; all-β:13; α/β or α+ β: 29 for NTS proteins. 
The three-dimensional (3D) structure of each protein was downloaded 
from the Protein Data Bank (PDB) [30]. These data can be downloaded 
from http://lee.kias.re.kr/~bala/PFDB. 

2.2. Structural parameters 

We employed seven topological parameters, extracted this informa
tion from the 3D structure, and studied their relationship with ln(kf). 
The seven structural parameters were as follows. 

2.2.1. Relative contact order 
RCO is defined as the average sequence distance between all pairs of 

residues in contact, normalized by the length of the entire sequence [13, 
14]. This reflects the relative importance of the local and nonlocal 
contacts of a protein in a 3D structure. 

RCO=
1

K.Nc

∑n

s=1

|p− q|>2

ΔApq (1) 

Unless otherwise noted, ΔApq is the heavy atoms distance (<7 Å), K 
is the number of residues, p and q are the sequence distances of inter
acting residues, and Nc is the total number of contacts. 

2.2.2. Absolute contact order 
ACO is the normalization of relative contact order by sequence 

length [19,31]. This calculates the average distance of both the local and 
nonlocal contacts. 

ACO=
1

Nc
∑n

s=1

|p− q|>2

ΔApq (2)  

2.2.3. Total contact distance 
TCD is the integration of CO and LRO [15] and is described as 

follows: 

TCD=
1

K2

∑n

s=1

|p− q|>0

ΔApq (3)  

where ΔApq is the distance between the heavy atoms of the contact pair 
of residues (<8 Å). Notably, the length of the residues is squared 
compared to the long-range order. 

2.2.4. Chain topology parameter 
CTP considers both local and nonlocal contacts [25], which are 

calculated as follows: 

CTP=
1

K.Nc

∑n

s=1

|p− q|>2

ΔApq2 (4)  

where ΔApq is a heavy atoms distance of <7 Å, and the sequence sep
aration is squared compared with CO. 

2.2.5. Fraction of local contact 
FLCO is based on short-range contacts [32] and is described as 

follows: 

FLCO=

∑

|p− q|≤4
Δ(p, q)

∑
|p− q|>0Δ(p, q)

(5)  

where Δ(p, q) = 1 if the heavy-atoms distance of the pair of residues is <
5 Å. If not, then Δ (p, q) = 0. 

2.2.6. Long-range order 
LRO is defined as a pair of residues Cα atoms that are far apart in the 
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primary sequence but close in 3D-space [14], which is described as: 

LRO=
∑Apq

K
,

{
Apq = 1 if |p − q| > 12

Apq = 0 otherwise (6)  

where p and q are two interacting residues whose Cα-Cα atoms distance 
≤ 8 Å. 

2.2.7. Long-range contact order 
LRCO is the calculated average sequence distance of Cα atoms [26], 

which is described as: 

LRCO=
1

K.Nc

∑n

s=1

|p− q|>0

ΔApq (7)  

where p and q are two interacting residues whose Cα-Cα atom distance is 
≤ 8 Å. 

2.3. Network centrality measures 

A residue-residue contact map was constructed using the same pro
cedure as that used for RCO. Subsequently, we computed CD, CB, CE, EC 
and Cc. 

Betweenness centrality (CB) of node θ is the sum of the fraction of all 
pairs of shortest paths that pass through. 

CB(θ) =
∑

p,q∈R

σ(p, q|θ)
σ(p, q)

(8)  

where R is the set of nodes, σ(p, q) is the number of shortest (p, q)-paths, 
and σ(p, q|θ) is the number of paths passing through node θ other than (p, 
q). If p = q, σ(p,q) = 1, and if θ ∈ p,q, σ(p,q|θ) = 0. 

Edge betweenness centrality (CE) is the sum of the fraction of all pairs of 
shortest paths that pass through the edge (e). 

CE =
∑

p,q∈R

σ(p, q|e)
σ(p, q)

(9)  

where R is the set of nodes, σ(p, q) is the number of shortest (p, q) paths, 
and σ(p, q|e) is the number of paths passing through edge e. 

Eigen centrality (EC) is calculated based on the neighbors’ centrality. 
The eigenvector for node a is the ath element of vector y defined by the 
equation Ty = δy, where T is the adjacency matrix of graph G with the 
eigenvalue. According to the Perron-Frobenius theorem, there is a 
unique and positive solution y if δ is the largest eigenvalue of adjacency 
matrix T. 

Closeness centrality (CC) of a node is the reciprocal of the average 
shortest-path distance to σ over all n-1 reachable nodes 

Cc(u)=
k − 1

∑k− 1

u=1
d(a, b)

(10)  

where d (a, b) is the shortest distance between a and b, k-1 is the number 
of reachable nodes from u. A higher closeness value indicates higher 
centrality. 

Degree centrality (CD) is defined as a measure that counts the number 
of neighbors in the network. 

2.4. Machine learning algorithms 

We employed ten different shallow machine learning regressors: 
random forest (RF), extreme gradient boosting (XGB), decision tree 
(DT), adaboost (AB), artificial neural network (ANN), light gradient 
boosting (LGB), SVM, gradient boosting (GB), catboost (CB), and 
extremely randomized tree (ERT). Because the dataset was small, we did 

not employ deep learning-based algorithms [33]. In general, training 
datasets and external validation datasets can be used to develop pre
diction models and evaluate their transferability, respectively [34]. 
Although the number of proteins in the current study was greater than 
that reported in previous studies, it was not sufficient to divide them into 
two datasets. Previous studies have demonstrated that when a dataset is 
small, the entire dataset can be used for model training [35–37]. Based 
on these studies, we used all proteins as a training dataset for the 
development of prediction models. The search ranges for the hyper
parameters for each algorithm were based on previous studies and 
optimized by leave-one-out cross-validation (LOOCV). These algorithms 
have been widely used for various function prediction problems based 
on their sequence, structure, images, and expression profiles. 

2.5. Evaluation criteria 

Three commonly used metrics were employed to evaluate perfor
mance: mean absolute difference (MAD), Pearson correlation coefficient 
(CC), and root mean square error (RMSE). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CC =

∑K

i=1
(mi − m)(ni − n)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

i=1
(mi − m)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

i=1
(ni − n)2

√

MAD =
1
K

∑K

i=1
|mi − ni|

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

i=1
(mi − ni)

2

√
√
√
√

(11)  

where mi and ni are the predicted and observed folding rates of the ith 
protein, respectively; and K is the total number of proteins. 

3. Results and discussion 

3.1. Structural parameters and their relationship with ln(kf) 

We constructed a new dataset containing 89 TS and 52 NTS, which 
are relatively larger than the number of proteins used in previous 
studies. Using these datasets, we computed seven structural parameters 
(CTP, TCD, ACO, RCO, FLCO, LRO, and LRCO) and sequence length 
(Nres), and examined their relationship with ln(kf). Notably, all struc
tural parameters (except Nres) were derived based on the TS. Fig. 1 shows 
the linear relationship between ln(kf) and different structural parame
ters for TS, where LRO achieved superior performance with a CC of 
− 0.758. Interestingly, Gromiha et al. [38] proposed an LRO based on a 
smaller dataset and demonstrated a high correlation with ln(kf). Sur
prisingly, LRO maintained similar levels of performance during our 
evaluation, particularly when we used a larger dataset. Conversely, the 
other six parameters (CTP, TCD, ACO, RCO, FLCO, and LRCO) showed 
significantly reduced correlations when compared with their corre
sponding values reported in the original paper, indicating that these 
parameters have limitations when applied to larger datasets. 

For NTS proteins, we examined whether TS structural parameters 
along Nres have a linear relationship between NTS proteins and ln(kf). 
The results show that Nres achieved the highest CC of − 0.841, which is in 
line with the results of previous studies [39]. It is noteworthy that ACO 
achieved a CC of − 0.772, which was significantly better than any other 
structural parameter. Apart from TCD and RCO, the other four structural 
parameters (CTP, FLCO, LRO, and LRCO) performed reasonably well on 
the NTS. As a result of this analysis, some of the structural parameters of 
TS proteins can also be applied to NTS proteins. In addition, we evalu
ated these structural parameters using a combined dataset (a combina
tion of NTS and TS proteins). Figure S1shows that ACO achieved the 
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highest CC of − 0.734, followed by LRO with a CC of − 0.704, which was 
significantly better than the other structural parameters. The results of 
this study indicate that the structural parameters derived from TS pro
teins are also applicable when combined with NTS proteins. In general, 
LRO, Nres, and ACO were the most effective parameters for predicting ln 
(kf) for the TS, NTS, and combined datasets, respectively. Because LRO 
and Nres have low CC in the combined dataset, they may not be suitable 
for identifying ln(kf) in the absence of known protein-folding classes 
(TS/NTS). 

3.2. Network centrality measures and their relationship with ln(kf) of TS 
and NTS 

We computed five network-based parameters (CD, CB, CE, EC and Cc.) 
and examine their relationship with ln(kf). As shown in Figure S2, three 
parameters (CD, CC, and CE) showed a reasonable performance (CC of ~ 
− 0.50) and were significantly better than the other two parameters for 
TS. However, the performance of the best network-based parameter (CD) 
(CC = − 0.508) was significantly lower than that of the best structural 
parameter (LRO) (CC of − 0.758). In the case of NTS, (CD, CC, and CE) 
achieved similar performance and were better than their respective 
performances on TS. Interestingly, CC (CC of − 0.842) achieves the same 
level of performance as Nres (CC of − 0.841). When using the combined 
dataset, CC (CC of − 0.700) achieved a similar performance with the best 
structural parameter ACO (CC of − 0.734). These results demonstrate 
that network centrality measures perform equally well with existing 
structural parameters on both the NTS and combined datasets, sug
gesting that residue communication is also important in the folding of 
proteins. 

3.3. Large scale machine learning regression models 

We employed ten different popular ML algorithms, including RF, 
XGB, DT, AB, ANN, LGB, SVM, GB, CB, and ERT. In this study, we 
evaluated all ten regressors because they have their own advantages and 
disadvantages with respect to predicting ln(kf). To develop these ML 
regressors, three different types of information were considered as input 
features: a linear combination of structural parameters, a linear com
bination of network parameters, a linear combination of both structural 

and network parameters, and Nres. The performance was evaluated using 
three metrics (CC, MAD, and RMSE). Among these, MAD was recom
mended in previous studies [40,41] as being the most effective for 
real-value prediction, and we used the same for ranking the models. 

The performance of different ML regression models based on TS 
proteins with three different feature sets is shown in Table 1. The per
formance of each ML model based on network properties was signifi
cantly lower than that of its counterpart based on structural parameters. 
Surprisingly, when these two types of information are incorporated into 
the respective ML model, the performance is similar in terms of CC; 
however, the MAD is slightly reduced, which indicates that multiple 
pieces of information are required to accurately predict ln(kf) for TS. 
Furthermore, we observed that SVM is consistently better than other ML 
regressors regardless of the features, suggesting that it is better suited for 
predicting ln(kf), possibly because of the small dataset size. 

In the case of NTS, five regressors (ERT, AB, ANN, CB, and SVM) 
achieved similar performances in terms of the correlation coefficient 
between the network properties and structural parameters (Table 2). In 
terms of MAD, the corresponding regressor based on the structural pa
rameters is superior. In the same manner as we observed in TS, the 
combination of both of these variables improves the correlation and 
reduces MAD. This indicates that both structural and network parame
ters are crucial for predicting ln(kf) of NTS proteins. In general, the SVM 
regressor performs better on different sets of features than all the other 
regressors. 

Based on the network properties in the combined dataset, each ML 
model performed significantly worse than its counterpart computed on 
the basis of structural parameters (Table 3). Interestingly, when these 
two types of information were incorporated into the respective ML 
models, both the CC and MAD improved. Furthermore, the SVM-based 
model performance is closer to the experimental values (Fig. 3) than 
the other regressors and ensemble models (described below). Table S1 
lists the optimal hyperparameters of the final SVM model. As there are 
no publicly available structure-based prediction methods, we are unable 
to compare the current performance with existing predictors. 

3.4. Comparison of SVM-based single model with the ensemble models 

In general, ensemble models perform better than single models do 

Fig. 1. Relationship between different structural parameters and folding rates of two-state proteins.  
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[42]. In brief, ln(kf) predicted by 10 different regressors was averaged 
and considered as the final output of the ensemble model. As shown in 
Fig. 4, ensemble models on two different datasets (TS and combined) 
achieved MADs of 1.89 and 1.81, respectively; these are better than 
those resulting from nine different regressors. However, the corre
sponding metrics (1.856 and 1.745, respectively) for the SVM-based 
single model were higher. In the case of NTS, the SVM-based single 
model is better than the ensemble model, indicating that the ensemble 
model is not suitable for predicting ln(kf). 

3.5. Model interpretation 

Using the Shapley additive explanations (SHAP) [43], we estimated 
the contribution of each feature derived from our model. In SHAP, the 
contribution of each feature to the model output is allocated based on its 
marginal contribution to a group sample N (with n features) [44]. Fig. 5 
shows the contribution of the top nine essential features and other fea
tures on the three different datasets. In the 2S dataset, the LRO and ACO 
features had high SHAP scores, indicating a significant contribution of 
these features. FLCO, LRCO, and CB contributed moderately to 2S pro
teins. For the N2S dataset, ACO contributed the most significantly, fol
lowed by CE, CC, LRCO, and Nres. In the combined dataset, LRO 

contributed the most significantly, followed by ACO, CC, CB, and CE. 
Both the structural parameters and network properties contributed to 
the top five, demonstrating the importance of combining different 
properties for accurate ln(kf) prediction. 

3.6. Comparison of SVM-based models with the statistical parameters 

The parameters LRO, Nres, and ACO achieved CC values of − 0.758, 
− 0.841, and − 0.734, respectively, for the TS, NTS, and combined 
datasets (Figs. 1–3). The corresponding CCs calculated based on the SVM 
were 0.791, 0.866, and 0.815, respectively (Tables 1–3). The perfor
mance of the ML-based models was significantly better than that of the 
best parameter, which is not surprising. Nevertheless, ML-based per
formance highlighting the importance of multiple factors extracted from 
the structure, is essential for predicting ln(kf). In contrast to previous 
studies on protein folding properties, our results demonstrate that both 
long-range and short-range interactions, as well as size and residue 
communication, are necessary. 

4. Conclusion 

Several structural parameters based on 3D structures have been 

Table 1 
Performance of different ML regressors on predicting ln(kf) based on TS proteins.   

Network properties (NP) Structural parameters (SP) NP + SP 

ML regressors CC MAD RMSE CC MAD RMSE CC MAD RMSE 
RF 0.597 2.483 3.077 0.776 1.969 2.410 0.791 1.867 2.342 
ERT 0.608 2.416 3.030 0.785 1.939 2.365 0.785 1.869 2.366 
GB 0.573 2.546 3.129 0.769 1.994 2.440 0.787 1.885 2.355 
AB 0.577 2.526 3.119 0.766 1.937 2.460 0.772 1.891 2.430 
ANN 0.612 2.491 3.081 0.771 1.927 2.435 0.746 2.048 2.552 
CB 0.610 2.409 3.033 0.794 1.902 2.331 0.788 1.884 2.359 
DT 0.534 2.762 3.653 0.711 2.262 2.868 0.687 2.242 2.981 
LGB 0.567 2.504 3.159 0.770 1.968 2.442 0.773 1.954 2.424 
SVM 0.616 2.403 3.033 0.790 1.896 2.353 0.791 1.856 2.344 
XGB 0.571 2.542 3.147 0.731 2.122 2.614 0.755 2.016 2.530  

Table 2 
Performance of different ML regressors on predicting ln(kf) based on NTS proteins.   

Network properties (NP) Structural parameters (SP) NP + SP 

ML regressors CC MAD RMSE CC MAD RMSE CC MAD RMSE 
RF 0.780 1.948 2.378 0.817 1.757 2.178 0.832 1.656 2.111 
ERT 0.800 1.876 2.268 0.827 1.726 2.132 0.843 1.649 2.052 
GB 0.726 2.037 2.603 0.802 1.854 2.264 0.838 1.609 2.098 
AB 0.820 1.749 2.173 0.836 1.682 2.088 0.845 1.642 2.066 
ANN 0.820 1.803 2.164 0.847 1.654 2.014 0.841 1.674 2.051 
CB 0.800 1.843 2.266 0.810 1.775 2.220 0.827 1.708 2.141 
DT 0.733 2.128 2.692 0.775 2.019 2.486 0.764 2.019 2.525 
LGB 0.638 2.502 2.913 0.740 2.054 2.542 0.741 1.990 2.562 
SVM 0.837 1.677 2.094 0.862 1.603 1.915 0.866 1.550 1.898 
XGB 0.784 1.907 2.365 0.813 1.762 2.239 0.822 1.726 2.220  

Table 3 
Performance of different ML regressors on predicting ln(kf) based on (TS + NTS) proteins.   

Network properties (NP) Structural parameters (SP) NP + SP 

ML regressors CC MAD RMSE CC MAD RMSE CC MAD RMSE 
RF 0.679 2.413 3.022 0.784 1.957 2.541 0.806 1.829 2.426 
ERT 0.709 2.269 2.888 0.796 1.935 2.491 0.811 1.822 2.403 
GB 0.635 2.562 3.167 0.756 2.061 2.695 0.796 1.897 2.481 
AB 0.708 2.291 2.893 0.788 1.912 2.521 0.802 1.845 2.447 
ANN 0.699 2.350 2.941 0.798 1.862 2.473 0.803 1.854 2.441 
CB 0.709 2.254 2.896 0.784 1.949 2.540 0.789 1.908 2.518 
DT 0.584 2.992 3.710 0.696 2.403 3.168 0.741 2.283 2.908 
LGB 0.659 2.508 3.082 0.750 2.111 2.709 0.793 1.992 2.496 
SVM 0.716 2.242 2.865 0.811 1.833 2.398 0.815 1.745 2.379 
XGB 0.680 2.392 3.014 0.775 1.961 2.598 0.777 1.991 2.581  
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Fig. 2. Relationship between different structural parameters and folding rates of non-two state proteins.  

Fig. 3. Pairwise comparison between the experimental ln(kf) and predicted ln(kf) value of various methods on the training dataset. (A) TS (two-state proteins), (B) 
NTS (non-two-state proteins), and (C) combined (TS + NTS). 

Fig. 4. Performance comparison in terms of MAD between different regressors on the training dataset. (A) TS, (B) NTS, and (C) combined.  
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reported previously, and their relationships with ln(kf) have been 
investigated [45–47]. On the basis of this strong relationship, they 
proposed a possible mechanism for protein folding. The purpose of this 
study is to determine the performance of each of these structural pa
rameters using a larger dataset. Our results show that LRO [38] is 
capable of achieving a similar performance on TS proteins. Interestingly, 
ACO was constructed using TS proteins, whose parameters can be 
transferred to the NTS and combined datasets. Unfortunately, none of 
these parameters provides a reliable prediction of ln(kf) based on the 3D 
structure. Thus, we evaluated a large-scale ML algorithm to identify a 
suitable algorithm for ln(kf) prediction using seven structural parame
ters, chain length, and five network-based features. SVM achieved the 
best results regardless of the datasets, suggesting that local contacts, 
non-local contacts, chain lengths, and residue communications may 
cooperate and play a critical role in the folding process. In previous 
studies, TS and NTS proteins were treated separately to develop 
ML-based models [41,48]. It is noteworthy that the performance of the 
SVM models trained on combined datasets is similar to that of SVM 
models trained on TS and NTS datasets, indicating that folding class 
information is not necessary when predicting ln(kf). AlphaFold [49] 
recently made a breakthrough in protein structure prediction by pre
dicting structures closer to native structures based on sequence infor
mation. Moreover, over 200 million predicted structures have been 
deposited in the databases [50,51]. Our approach may be useful if re
searchers wish to find ln(kf) prior to performing folding experiments. 
Although we conducted large-scale ML-based prediction models, all 
were single models. Recent studies have highlighted the importance of 
integrating multiple models to solve various problems [52–57]. In this 
regard, we plan to test different computational approaches and make the 
best model publicly available on a web server. 
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