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Abstract
Background  Postoperative delirium is a common complication that is distressing. This study aimed to demonstrate a 
prediction model for delirium.

Methods  Among 203,374undergoing non-cardiac surgery between January 2011 and June 2019 at Samsung 
Medical Center, 2,865 (1.4%) were diagnosed with postoperative delirium. After comparing performances of machine 
learning algorithms, we chose variables for a prediction model based on an extreme gradient boosting algorithm. 
Using the top five variables, we generated a prediction model for delirium and conducted an external validation. 
The Kaplan–Meier and Cox survival analyses were used to analyse the difference of delirium occurrence in patients 
classified as a prediction model.

Results  The top five variables selected for the postoperative delirium prediction model were age, operation duration, 
physical status classification, male sex, and surgical risk. An optimal probability threshold in this model was estimated 
to be 0.02. The area under the receiver operating characteristic (AUROC) curve was 0.870 with a 95% confidence 
interval of 0.855–0.885, and the sensitivity and specificity of the model were 0.76 and 0.84, respectively. In an external 
validation, the AUROC was 0.867 (0.845–0.877). In the survival analysis, delirium occurred more frequently in the group 
of patients predicted as delirium using an internal validation dataset (p < 0.001).

Conclusion  Based on machine learning techniques, we analyzed a prediction model of delirium in patients who 
underwent non-cardiac surgery. Screening for delirium based on the prediction model could improve postoperative 
care. The working model is provided online and is available for further verification among other populations.

Trial registration  KCT 0006363.
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Background
Delirium is characterized by acute confusion that is com-
monly reversible and preventable [1]. Delirium is stressful 
for patients, families, and healthcare providers and leads 
to increased duration of hospital stay, healthcare costs, 
complications, readmission rate, and in-hospital mor-
tality [2–4]. In surgical patients, delirium is a common 
complication, with a prevalence varying widely from 5 to 
40% based on surgery type [5]. Previous studies reported 
that screening of delirium can lead to increased rate of 
diagnosis and early intervention that reduce duration and 
complications of delirium [6]. Effectiveness of appropri-
ate perioperative interventions based on delirium predic-
tion have been described [7]. Although various methods 
have been introduced, prediction of postoperative delir-
ium remains challenging, and a widely accepted predic-
tion tool does not yet exist [8]. Numerous factors other 
than surgery type that reflect cerebral vulnerability and 
exogenous neurocognitive stressors are involved in the 
occurrence of delirium. Furthermore, an overlap exists 
between predisposing and precipitating factors of post-
operative delirium, complicating prevention of delirium 
during postoperative care.

To overcome this issue, we considered a machine 
learning technique that has recently gained attention in 
studies evaluating predictors. The machine learning tech-
nique can handle numerous variables in nonlinear and 
highly interactive ways [9]. In a recent study, the machine 
learning model outperformed traditional clinician-based 
regression models in predicting postoperative delirium 
[10]. However, this model was not externally validated 
in other populations. Another previous model was based 
on a relatively small number of patients and limited to an 
older age group [11]. Therefore, our study used a larger 
amount of real-world data of consecutive adult patients 
who underwent surgery in a large tertiary center between 
January 2011 and June 2019 to generate a prediction 
model. Furthermore, the model was validated using a 
dataset from another institution and is provided online 
for further verification.

Methods
Ethics
This study was conducted in accordance with the Dec-
laration of Helsinki and was reported following the 
Strengthening the Reporting of Observational Studies 
in Epidemiology. Because the registry is curated in a de-
identified form, the Institutional Review Board of Sam-
sung Medical waived approval (Samsung Medical Center, 
81 Irwon-ro, Gangnam-gu, Seoul, Korea, 2021-06-078 
Chairperson Prof. SW Park) on 26th June 2021, and writ-
ten informed consent from participants was also waived. 
Use of the dataset for external validation was approved 
by the Institutional Review Board of Ajou University 

Hospital (World cup-ro, Yeongtong-gu, Suwon, Korea, 
AJIRB-MED-MDB-21-662 Chairperson Prof. SU Han).

Data curation and study population
This study used Samsung Medical Center-Non-Cardiac 
operation (SMC-NoCop) registry (cris.nih.go.kr; registra-
tion number KCT 0006363; registration day 21/07/2021). 
The registry is a single-center de-identified cohort of 
203,787 consecutive patients 18 years of age and older 
who underwent non-cardiac surgery at Samsung Medi-
cal Center, Seoul, Korea, between January 2011 and June 
2019. The registry is based on raw data extracted by the 
Clinical Data Warehouse Darwin-C, an electronic sys-
tem that enables investigators to search and retrieve de-
identified medical records of the institutional electronic 
archive system. This system contains electronic hospital 
records of more than 4  million patients and comprises 
more than 900 million laboratory findings and 200 mil-
lion prescriptions. For deaths outside the institution, the 
system uses data from the National Population Registry 
of the Korea National Statistical Office.

Data from Ajou University Medical Center were used 
for external validation. We curated data between January 
2011 and October 2021, using the same recruitment cri-
teria and included 101,582 patients in the external valida-
tion dataset.

Predictors
A total of 54 predictor variables obtained from a preop-
erative evaluation sheet was provided as input to each 
model (Additional file 1: Table S1). Investigators inde-
pendent from this study organized relevant preopera-
tive variables including demographic data, underlying 
diseases, and information from blood laboratory tests. 
In addition, we used International Classification of Dis-
eases-10 codes to organize preoperative diagnosis and 
estimated Charlson Comorbidity Index [12]. The risks of 
surgical procedures were stratified according to the Euro-
pean Society of Cardiology (ESC)/European Society of 
Anaesthesiology (ESA) guidelines on non-cardiac surgery 
[13]. The American Society of Anesthesiologists (ASA) 
Physical Status Classification was classified by attending 
anesthesiologists and extracted from the preoperative 
evaluation sheet [14].

Study endpoints and definitions
The primary endpoint was postoperative delirium diag-
nosed by a psychiatrist using Diagnostic Statistical 
Manual (DSM) criteria during the first 30 postoperative 
days. Patients assessed for acute confusion or behavioral 
change using the confusion assessment method (CAM) 
were referred to the department of psychiatry at the dis-
cretion of attending clinicians. Specifically, CAM is based 
on the four features of delirium including acute onset 
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and fluctuating course, inattention, disorganised think-
ing, and altered level of consciousness. CAM considers 
patients delirious when acute onset, fluctuating course, 
and inattention are accompanied by either disorganized 
thinking or altered level of consciousness. For a referred 
patient, the attending psychiatrist uses Diagnostic Sta-
tistical Manual (DSM) criteria to assess the patient for 
delirium. To ensure a first-time diagnosis of delirium, we 
excluded patients who had history of delirium or demen-
tia preoperatively.

Model development
We compared the performance of prediction models 
created by four machine learning algorithms: extreme 
gradient boosting (XGB), random forest (RF), logistic 
regression (LR), and Naive Bayes (NB). Further details of 
machine learning algorithms are presented in Additional 
file 1: Table S2.

Model evaluation
We calculated four metrics to evaluate predictive models: 
accuracy, F1 score, area under the precision and recall 
curve (AUPRC), and area under the receiver operating 
characteristic curve (AUROC). We optimized the hyper-
parameters based on a grid search using the AUROC 
curve and the five-fold cross-validation used during 
model development. We divided the data into training 
and test models using a stratified random split with a 
constant probability of an event. Postoperative delirium 
was an event in this study, in which 80% of the data were 
reserved for creating the machine learning model and 
the remaining 20% for the testing model. In addition, we 
included calibration metrics of calibration plot, calibra-
tion slope, intercept, Spiegelhalter z statistic, and Brier 
score. With the Spiegelhalter z statistic, P > 0.05 indi-
cates a well calibrated model [15]. We used the maximal 
Youden index to select the optimal cut-off value in each 
prediction model and calculated the corresponding accu-
racy [16]. We also generated a case balanced dataset for 
an internal validation.

The SHapley Additive exPlanations (SHAP) summary 
plot was used to present feature importance. The effect of 
each feature on postoperative delirium was presented as 
a SHAP value representing the importance of a variable 
by deriving a marginal distribution and weighted average 
with all but the variable of interest fixed [17]. The Shapley 
value is defined as the average marginal contribution of a 
feature value across all possible feature coalitions. Under 
this definition, a Shapley value for a given feature value 
can be interpreted as the difference between the actual 
prediction and the average prediction for the entire data 
set. The SHAP summary plot sorts features in descend-
ing order based on effects on postoperative delirium. 
One dot on each variable line represents one patient, and 

the horizontal location indicates the level of association 
between the feature and outcome. The right side is where 
the SHAP value is > 0, and variable-specific SHAP val-
ues > 0 indicate increased risk of outcome.

A sub-analysis using an internal validation dataset was 
conducted to validate the predicted delirium outcomes. 
Among the sub-analysis patients, patients were divided 
into high-risk and low-risk patient groups according to 
the finalized prediction model. The Kaplan–Meier and 
Cox survival analyses were used to analyse the difference 
of delirium occurrence in the high-risk patient group ver-
sus low-risk patient group.

External validation
To confirm the validity of the model performance, we 
conducted external validation using a different data-
set from Ajou University Medical Center. The best per-
formance model using the selected five variables was 
validated.

Statistical analysis
The differences between patients with and without post-
operative delirium were determined. Continuous features 
are presented as mean ± standard deviation or median 
with interquartile range, and comparisons were con-
ducted using t-test or Mann-Whitney test, as applicable. 
Categorical features are presented as number and per-
centage, and differences were evaluated using chi-square 
or Fisher’s exact test. Survival analysis was performed 
using the survival package, and P values for comparing 
the survival rates were obtained using the log-rank test. 
Analysis was performed using R 4.1.0 (Vienna, Austria; 
http://www.R-project.org/).

Results
Baseline characteristics
We excluded 413 patients who were diagnosed with 
delirium or dementia preoperatively. A total of 203,374 
patients was included for model development, and 
postoperative delirium was diagnosed in 2,865 (1.4%) 
patients. The baseline characteristics of patients with 
and without postoperative delirium are presented in 
Table 1. Patients with delirium were predominantly male, 
older, had higher ASA Physical Status Classification, 
and tended to show a higher incidence of psychologic 
disorder, underlying disease, and electrolyte imbalance. 
Intraoperatively, patients with delirium more frequently 
underwent emergency surgery under general anesthesia 
with longer operation duration (Table 2). Mortality dur-
ing the first year after surgery was higher in patients with 
delirium (2.7% vs. 17.0%).

http://www.R-project.org/
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Table 1  Baseline characteristics of patients with and without postoperative delirium
No delirium
(N = 200,509)

Delirium
(N = 2,865)

p value

Male 85978 (42.9) 1916 (66.9) < 0.001

Age 52.6 (± 15.2) 65.0 (± 14.4) < 0.001

Body mass index 24.2 (± 3.6) 23.6 (± 3.7) < 0.001

ASA physical status < 0.001

I 87777 (43.8) 259 (9.0)

II 101562 (50.7) 1580 (55.1)

III 10500 (5.2) 900 (31.4)

IV 529 (0.3) 122 (4.3)

V 141 (0.1) 4 (0.1)

Psychiatric disorder, any 6609 (3.3) 348 (12.1) < 0.001

Mood disorder 2779 (1.4) 157 (5.5) < 0.001

Schizophrenia 189 (0.1) 40 (1.4) < 0.001

Alcoholic use disorder 129 (0.1) 15 (0.5) < 0.001

Substance abuse (without 
alcohol)

44 (0.0) 3 (0.1) 0.02

Sleep disorder 2779 (1.4) 83 (2.9) < 0.001

Personality disorder 59 (0.0) 3 (0.1) 0.08

Current alcohol 40107 (20.0) 421 (14.7) < 0.001

Current smoking 15248 (7.6) 310 (10.8) < 0.001

Previous disease

Hypertension 50346 (25.1) 1248 (43.6) < 0.001

Diabetes 22810 (11.4) 722 (25.2) < 0.001

Chronic kidney disease 3210 (1.6) 182 (6.4) < 0.001

Dialysis 869 (0.4) 97 (3.4) < 0.001

Charlson comorbidity index 0.2 (± 0.6) 0.5 (± 1.1) < 0.001

Stroke 4022 (2.0) 239 (8.3) < 0.001

Coronary artery disease 3970 (2.0) 165 (5.8) < 0.001

Coronary revascularization

Percutaneous intervention 2939 (1.5) 133 (4.6) < 0.001

Bypass graft 399 (0.2) 25 (0.9) < 0.001

Heart failure 579 (0.3) 44 (1.5) < 0.001

Arrhythmia 2832 (1.4) 154 (5.4) < 0.001

Atrial fibrillation 1776 (0.9) 129 (4.5) < 0.001

Peripheral artery disease 533 (0.3) 43 (1.5) < 0.001

Aortic disease 629 (0.3) 67 (2.3) < 0.001

Valvular heart disease 305 (0.2) 12 (0.4) < 0.001

Chronic obstructive pulmo-
nary disease

3465 (1.7) 158 (5.5) < 0.001

Preoperative blood laboratory 
tests

Hemoglobin, g/dl 13.3 (± 1.8) 12.2 (± 2.2) < 0.001

Creatinine, mg/dL 0.9 (± 0.8) 1.3 (± 1.7) < 0.001

Preoperative electrolytes

Hypernatremia 1395 (0.7) 34 (1.2) < 0.001

Hyponatremia 6199 (3.1) 442 (15.4) < 0.001

Hyperkalemia 1247 (0.6) 67 (2.3) < 0.001

Hypokalemia 2488 (1.2) 153 (5.3) < 0.001

Hyperphosphatemia 5576 (2.8) 153 (5.3) < 0.001

Hypophosphatemia 4477 (2.2) 205 (7.2) < 0.001

Hyperchloremia 21110 (10.5) 667 (23.3) < 0.001

Hypochloremia 3593 (1.8) 238 (8.3) < 0.001
Data are presented as n (%) or mean (± standard deviation)

ASA American Society of Anesthesiologists
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Development of prediction model
The AUROCs for the XGB, RF, LR, and NB algorithms 
were 0.902 (0.889–0.913), 0.889 (0.813–0.949), 0.888 
(0.870–0.898), and 0.867 (0.845–0.877), respectively 
(Fig. 1). In terms of the performance metrics of accuracy, 
AUPRC, AUROC, and F1 score, the XGB model and RF 
model showed comparable performances (XGB: 0.855, 
0.170, 0.902, 0.136; RF: 0.974, 0.080, 0.889, 0.186; LR: 

0.828, 0.149, 0.888, 0.127; NB: 0.828, 0.105, 0.867, 0.122, 
respectively). We chose XGB because even though the F1 
score of RF was higher than XGB, the AUPRC of RF was 
much lower than XGB. The performance metrics of each 
model are summarized in Additional file 1: Table S3. We 
selected the XGB algorithm for the final model.

Development of prediction model using selected variables
The XGB algorithm is a decision tree-based ensemble 
model using a gradient boosting framework and the 
Shapley value framework known to fairly evaluate perfor-
mance [17].

The SHAP summary plot was generated based on 
the results of the XGB model (Fig.  2). For practical use 
of prediction models in clinical practice, we eliminated 
variables based on the degree of effect on the out-
come and selected the top five variables with a SHAP 
value > 0.2 for the final model. The top five variables 
with SHAP value > 0.2 were age (0.526), operation dura-
tion (0.415), ASA Physical Status Classification (0.380), 
male sex (0.208), and surgical risk according to ESC/ESA 
guidelines (0.201). We generated a prediction model for 
delirium based on these variables. The AUROC of the 
prediction model using the selected variables was 0.870 
(0.855–0.885; Fig.  1). Other performance metrics of the 
prediction model were accuracy of 0.834, AUPRC of 
0.148, and F1 score of 0.114 (Additional file 1: Table S3). 
In the internal validation using a case balanced dataset, 
AUPRC, AUROC, and F1 score were improved (0.855, 
0.860, and 0.807, respectively).

We used leveraging Shiny, an application-building 
package from R, to allow others to freely access the appli-
cation via a public link. The optimal probability thresh-
old based on maximum Youden index was estimated to 

Table 2  Operative variables of patients with and without 
postoperative delirium

No delirium
(N = 200,509)

Delirium
(N = 2,865)

p 
value

General anesthesia 173,540 (86.5) 2599 (90.7) < 0.001

Emergency operation 13,765 (6.9) 648 (22.6) < 0.001

Operation duration, min 130.4 (± 98.6) 233.3 
(± 174.5)

< 0.001

Surgical risk < 0.001

Mild 78,787 (39.3) 414 (14.5)

Intermediate 110,034 (54.9) 1696 (59.2)

High 11,688 (5.8) 755 (26.4)

Surgery types

Neuroendocrine 13,050 (6.5) 21 (0.7) < 0.001

Lung 11,743 (5.9) 324 (11.3) < 0.001

Head & Neck 30,491 (15.2) 514 (17.9) < 0.001

Breast 17,629 (8.8) 37 (1.3) < 0.001

Stomach 12,492 (6.2) 99 (3.5) < 0.001

Hepatobiliary 16,697 (8.3) 499 (17.4) 0.97

Colorectal 13,635 (6.8) 283 (9.9) 0.32

Urology 18,431 (9.2) 159 (5.5) < 0.001

Gynecology 24,487 (12.2) 43 (1.5) < 0.001

Bone & Skin etc. 41,854 (20.9) 886 (30.9) < 0.001
Data are presented as n (%) or mean (± standard deviation)

Surgical risk was stratified according to 2014 European Society of Cardiology/
European Society of Anaesthesiology guidelines

Fig. 1  Receiver operating characteristic (ROC) curves of the prediction model: A, ROC curves for postoperative delirium according to different machine 
learning algorithm using an internal validation dataset, B, ROC curves for postoperative delirium of the extreme gradient boosting (XGB) algorithm ac-
cording to number of retained variables using internal validation dataset and external validation dataset
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be 0.020 in this model. Applying this threshold, the sen-
sitivity and specificity of the model were 0.76 and 0.84, 
respectively. A functioning version of the model is pro-
vided online athttps://psyshiny.shinyapps.io/shiny/. 
When values for each of the top five variables for target 
patients are entered, the probability for delirium is shown 
as an output.

External validation of prediction model
The external validation dataset represented 101,582 
patients. Postoperative delirium developed in 327 (0.3%) 
patients. The model achieved an AUROC of 0.867 
(0.845–0.877) in the external validation dataset (Fig.  1). 
Other external validation performance metrics of the 
prediction model using the selected variables were accu-
racy of 0.745, AUPRC of 0.062, and F1 score of 0.064 
(Additional file 1: Table S2).

Kaplan-Meier analysis of stratified patients
Figure 3 shows the clinical benefit of using the prediction 
model for improving early detection by supporting delir-
ium screening. Survival analysis showed that delirium 
occurred more frequently in high-risk patient group than 
in low-risk patient group (log-rank, p < 0.001). The hazard 
ratio was 13.3 (95% CI 10.99–16.13, p < 0.001).

Calibration of prediction model
We showed that both the XGB model using all variables 
and the XGB model using selected variables were well 
calibrated (Total: Spiegelhalter z = − 0.05; p = 0.051; Top 
five: Spiegelhalter z = − 0.27; p = 0.064, respectively). The 
calibration plot of each model is shown in Additional file 
1: Fig. S1.

Discussion
In this study, we demonstrated a prediction model for 
delirium after non-cardiac surgery. We selected the five 
variables age, operation duration, ASA Physical Status 
Classification, sex, and operation risk based on machine 
learning techniques. The incidence of postoperative 
delirium was 1.4% in the data set, and the applied mod-
els showed fair performance for delirium prediction. 
Our final prediction model achieved an AUROC value of 
0.870 (0.855–0.885). AUPRC and F1 score was relatively 
low owing to case imbalanced nature of the dataset, but 
these metrics were improved in an internal validation 
with case balanced dataset. This model was validated and 
showed similar predictive power in a separate cohort. 
The clinical benefit of the prediction model for screening 
postoperative delirium was also evaluated.

Delirium is an acute state of confusion accompa-
nied by fluctuating awareness, disorientation, memory 

Fig. 2  SHapley Additive exPlanations (SHAP) summary plot representing the results of a machine learning-based extreme gradient boosting (XGB) 
algorithm

 

https://psyshiny.shinyapps.io/shiny/
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impairment, disturbances of perception, and disorga-
nized thinking [5]. Although these symptoms are mostly 
reversible, the condition is distressing and can lead to 
serious and costly consequences such as increased dura-
tion of hospital stay and higher rates of re-admission, 
complication, and mortality during hospital stay [2–4]. 
Our data also showed that one-year mortality was sig-
nificantly increased in patients diagnosed with delirium. 
Postoperative delirium has been reported to be prevent-
able in nearly 40% of patients [1, 18], and identifying 
individuals at higher risk is the first step to modify pre-
cipitating factors and allow interventions to be appropri-
ately targeted. This study applied relatively strict criteria 
for delirium as diagnosed by psychiatrists to distinguish 
symptoms from those of remnant anesthetics immedi-
ately after operation. From a clinical perspective, another 
strength of our prediction model is it can be widely 
applied over a broad spectrum of non-cardiac surgical 
procedures with a small number of readily available vari-
ables. Furthermore, we conducted an external validation 
and showed similar prediction capability in a dataset with 
significantly lower prevalence of delirium and an internal 
validation with balanced dataset. The difference in delir-
ium incidence between institutions has been reported 
in Korea [19], and validation in a dataset with different 

features is desirable when evaluating the generalizability 
of the model [20].

Causes of delirium include any pathophysiological 
stressor that affects cerebral functioning [2]. Multicom-
ponent risk factors that reflect an interplay between 
cerebral vulnerability and neurocognitive stressors dur-
ing pre- and intraoperative periods should be considered 
for prediction of postoperative delirium. Several scor-
ing systems based on traditional regression models have 
been proposed to predict postoperative delirium [21, 
22]. However, these models showed inadequate and vari-
able capabilities, and a universally accepted system does 
not exist in daily practice [8]. In this study, we adopted 
machine learning techniques that can handle a complex 
relationships of numerous variables with nonlinear inter-
actions to demonstrate a prediction model for postop-
erative delirium [23]. Furthermore, we compared several 
algorithms of machine learning techniques and chose 
XGB for its highest performance [24, 25].

In the field of medicine, artificial intelligence results, 
such as those of machine learning techniques, should 
be interpreted based on clinical suitability. We selected 
variables according to SHAP feature importance based 
on Shapley value, which is computationally fast and has 
good theoretical properties [17]. The variables retained in 
our model were previously associated with delirium. Age 

Fig. 3  Kaplan-Meier survival analysis of stratified patients using an internal validation dataset
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is the most well-known risk factor for delirium in any 
clinical situation [2, 26]. In a number of previous stud-
ies, male sex was reported a risk factor for postoperative 
delirium [8, 27, 28]. Delirium is caused by deterioration 
of homeostasis and physical status, and these conditions 
are more likely to occur during higher-risk surgery with 
longer duration [29, 30]. The ASA Physical Status Clas-
sification has long been widely used to stratify the risk of 
patients undergoing surgical procedures [14]. Finally, the 
surgical risk in our model was stratified according to the 
ESC/ESA guidelines on non-cardiac surgery [13], which 
group types of surgery based on postoperative mortal-
ity and are well known to reflect the metabolic burden 
of surgical procedures.Our model is clinically explain-
able, has only five variables, and shows high performance. 
The delirium prediction risk is easily calculated from 
the URL (https://psyshiny.shinyapps.io/shiny/). Specifi-
cally, the risk of delirium increased with age and opera-
tion duration. ASA Physical Status Classification score 
also increased the risk of delirium as the score increases, 
e.g. severe systemic disease with a score of 3 is more 
risky than normal healthy patients with a score of 1. The 
risk was also higher for men than women and for high-
risk surgeries. Surgical risk was categorized according to 
the ESC/ESA guidelines: low-risk surgeries with a score 
of 0 included procedures such as debridement, simple 
sutures, and mastectomy, while high-risk surgeries with 
a score of 2 included aortic valve replacement, perforated 
appendectomy, and amputation. In addition, the patients 
in high-risk group were more likely to develop postopera-
tive delirium than those in low-risk group. The model can 
be helpful for effectively screening and preventing post-
operative delirium as well as to determine further treat-
ment by psychiatric or rehabilitation professionals with 
limited resources [10]. Furthermore, the model showed 
modest calibration to reflect reality despite case imbal-
ance. Previous models that originated from a case-imbal-
anced dataset showed a limitation due to poor calibration 
[31]. Further studies for clinical applications are needed 
to identify the potential feasibility of this model.

There are several limitations that need to be consid-
ered when interpreting our results. First, the variables 
of the models are clinically relevant, but causality can-
not be confirmed due to the nature of the retrospective 
data. Particularly. the wide standard deviation in opera-
tion duration was observed in both groups, which may 
be a reflection of the real-world variability that occurs 
in surgical practice and could impact the interpretation 
of our findings. Second, institutional protocol for peri-
operative care can vary between departments and could 
have changed during the long study period. Despite the 
institutional protocol, decisions often were made at the 
discretion of attending clinicians. Third, the results can-
not be generalized to other patient groups because ethnic 

differences were not considered. Fourth, the data were 
imbalanced with a low incidence of delirium, resulting 
in low sensitivity of the model. However, this low preva-
lence was caused by the fact that the diagnosis code was 
recorded only when the patient was consulted by the psy-
chiatry department. Furthermore, this study included 
a large number of patients, compared to other studies, 
and it might lead to low prevalence inevitably. Because 
there was no systematic screening of patients for delir-
ium postoperatively, it seems that many cases were not 
noticed in real-world setting. That’s why this prediction 
model for screening is needed and will need to be veri-
fied by other datasets in the future. Fifth, other delirium 
risk factors from previous studies were not included in 
this study. For example, the preoperative status of cogni-
tive function, sleep evaluation, emotional status, current 
medication, etc. were not included as variables. How-
ever, the variables used in this study are those that are 
routinely recorded on preoperative assessment sheets. In 
order to develop a clinically useful model, model devel-
opment was performed using routinely recorded infor-
mation. Also, our study was to predict postoperative 
delirium with preoperative variables, so we were not able 
to include perioperative or postoperative variables. Last, 
factors retained in the model were mostly non-modifi-
able, and prevention or treatment strategies could not be 
proposed. Despite these limitations, ours is the first study 
to identify risk factors for postoperative delirium in non-
cardiac surgery using a machine learning algorithm and a 
proven prediction model.

Conclusion
We selected five variables using machine learning tech-
niques and demonstrated a prediction model for delirium 
in patients undergoing non-cardiac surgery. This model 
could be useful for predicting postoperative delirium and 
identifying high-risk patients in advance.
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