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Assessing physical abilities 
of sarcopenia patients using 
gait analysis and smart insole 
for development of digital 
biomarker
Shinjune Kim 1, Seongjin Park 2, Sangyeob Lee 2, Sung Hyo Seo 2, Hyeon Su Kim 1, 
Yonghan Cha 3, Jung‑Taek Kim 4, Jin‑Woo Kim 5, Yong‑Chan Ha 6 & Jun‑Il Yoo 7*

The aim of this study is to compare variable importance across multiple measurement tools, and to 
use smart insole and artificial intelligence (AI) gait analysis to create variables that can evaluate the 
physical abilities of sarcopenia patients. By analyzing and comparing sarcopenia patients with non 
sarcopenia patients, this study aims to develop predictive and classification models for sarcopenia 
and discover digital biomarkers. The researchers used smart insole equipment to collect plantar 
pressure data from 83 patients, and a smart phone to collect video data for pose estimation. A Mann–
Whitney U was conducted to compare the sarcopenia group of 23 patients and the control group of 60 
patients. Smart insole and pose estimation were used to compare the physical abilities of sarcopenia 
patients with a control group. Analysis of joint point variables showed significant differences in 12 
out of 15 variables, but not in knee mean, ankle range, and hip range. These findings suggest that 
digital biomarkers can be used to differentiate sarcopenia patients from the normal population with 
improved accuracy. This study compared musculoskeletal disorder patients to sarcopenia patients 
using smart insole and pose estimation. Multiple measurement methods are important for accurate 
sarcopenia diagnosis and digital technology has potential for improving diagnosis and treatment.

Sarcopenia is an age-related decrease in muscle mass, strength, and function. It is a common problem among 
older people and can lead to reduced mobility, increased risk of falls, fractures and reduced quality of life1. The 
causes of sarcopenia are complex, including hormonal changes, reduced physical activity, oxidative stress and 
inflammation, and changes in muscle protein synthesis and breakdown2,3. Several guidelines have been developed 
to diagnose sarcopenia, and there are representative guidelines presented by institutions such as EWGSOP and 
AWGS4–6. These diagnostic guidelines include physical function evaluation items for patients with sarcopenia, 
which are currently being measured in various ways1,7,8.

Diagnosing sarcopenia involves assessing muscle mass, strength, physical performance, and body composi-
tion through various methods. A recent focus has been on evaluating physical performance, with tools like the 
Gait Speed Test, Chair Stand Test, Timed Up and Go (TUG) Test, and Handgrip Strength Test being commonly 
used9,10. However, these methods are susceptible to subjective bias from the measurer or the environment. To 
address this, there has been a push towards using artificial intelligence (AI) to gather physical performance 
data11. In particular, studies such as calculating joint angles and ranges using pose estimation are being actively 
discussed12,13.
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Research is underway to enhance the measurement accuracy of patients’ physical performance using smart 
equipment, alongside AI technologies such as body pose estimation14–16. Pose estimation is a computer vision 
technology that uses deep learning models to estimate human body key points in real-time. It tracks and detects 
human body joints and parts, allowing for 2D or 3D pose estimation17–19. Currently, there is active research 
being conducted to compare its accuracy and usefulness with VICON motion system (Vicon Nexus; Vicon 
Motion Systems Ltd., Oxford, England), which uses multiple cameras to perform highly accurate 3D motion 
capture12,20. Through these comparative studies, the accuracy and usefulness of the pose estimation method is 
being verified12,20,21. In addition, various wearable devices such as smartwatches and smart insoles are currently 
being used to measure patients’ physical performance. In particular, research utilizing Inertial Measurement 
Unit (IMU) sensors such as the Smart Insole is actively being conducted in the field of muscular dystrophy, and 
significant spatial and temporal parameters are being identified. As an example, there have been studies analyz-
ing the gait of osteoporosis and muscular dystrophy using AI and wearable sensors. There have also been studies 
identifying patients with muscular dystrophy using IMU sensors22,23.

In current research on various musculoskeletal patients, including sarcopenia, it is common to use a single 
measurement tool for analysis. However, this approach may not fully capture the diversity of variables that each 
tool can measure, and may not accurately reflect the relative importance of variables when comparing across 
tools. Therefore, to develop predictive and classification models for sarcopenia and discover digital biomark-
ers, it is crucial to compare variable importance across multiple measurement tools and find a simple, accurate 
assessment tool. The purpose of this study is to use smart insole and AI gait analysis together to create variables 
that can evaluate the physical abilities of sarcopenia patients, before expanding to predictive and classification 
models, and to compare and analyze sarcopenia patients with healthy individuals.

Materials and methods
Subjects.  In order to collect insole and pose esimation data for sarcopenia, GNUH (Gyeongsang National 
University Hospital, Jinju, South Korea) conducted a study on 83 patients with musculoskeletal disorders in 
2022. Of the 83 patients with musculoskeletal disorders, 23 were pre-judged to have sarcopenia. Among the 23 
sarcopenia patients, there were 15 females and 8 males, while the Control group consisted of 23 and 31 indi-
viduals, respectively (refer to Supplementary Table S1). The study adhered to the principles of the Declaration 
of Helsinki and was approved by the IRB at Gyeongsang National University Hospital. All research procedures 
were carried out with strict adherence to ethical standards, including protection of participants’ privacy, confi-
dentiality, and rights.

To collect data from the insoles of 83 patients, we used the Smart Insole equipment from SALTED (Seoul, 
South Korea), which is equipped with four pressure sensors and three-axis IMU sensors for each insole, as shown 
in Fig. 124. The insoles wirelessly transmitted four-channel foot pressure and three-channel acceleration data 
at a sampling rate of 30 Hz. To collect plantar pressure data, each patient wore the insoles and walked for one 
minute16. A smart phone (Galaxy A20, Samsung Electronics) equipment was used to collect video data to be used 
for pose estimation. The measurement was conducted using the rear camera of a smartphone, and the recorded 
video had a resolution of 1080p and a frame rate of 30fps. As for the video recording protocol, as shown in Fig. 2, 
a lateral walking video was recorded once for a walking distance of 5 m. In addition, the distance between the 
patient and the camera was based on a vertical distance of 2 m and a height of 1.3 m from the floor. There are no 
standardized measurement distances and heights. For this study, a measurement distance of 5 m was used and the 
minimum distance of 2 m was set to fit the entire screen. For the height from the ground, we used approximately 
1.3, the height of a person’s shoulders, for angle and horizontal correction.

Analysis methods.  We used the SALTED Smart Insole (Seoul, South Korea) equipment to collect plantar 
pressure data from 83 patients. The insoles, as shown in Fig. 1, were equipped with four pressure sensors and one 
three-axis IMU sensor for calibration purposes. Each patient wore the insoles while walking for one minute, and 
the pressure data were collected using the four pressure sensors. The SALTED internal program was then utilized 
to calculate relevant variables as shown in Fig. 3.

Figure 1.   Smart Insole for gait analysis.
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Figure 2.   Video recording protocol.

Figure 3.   Gait cycle captured by smart inasole.
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To estimate and analyze the patient’s pose, we employed video analysis for pose estimation using the Dr.log 
application and the DMS system (Deevo, Jinju, Korea)25,26. The Dr.log application collected patients’ gait videos 
in real-time and stored them in a database. The DMS system performed real-time pose estimation from the col-
lected database. For the pose estimation process, we utilized Mediapipe, an open-source software developed by 
Google that uses a Convolutional Neural Network (CNN) model based on neural network-based deep learning 
algorithms. The CNN model includes a convolutional layer and a pooling layer to extract features from the input 
image, followed by fully connected and softmax layers. Using Mediapipe’s pose estimation function, we estimated 
a total of 33 key points, with 25 representing the upper body and 8 representing the lower body, utilizing the 
Blaze Pose model, as shown in Fig. 427.

We utilized R Studio, a statistical analysis program, to analyze the centrality and variability of all col-
lected patient data. In addition, due to the small sample size, we conducted Shapiro normality tests and used 
Mann–Whitney U tests when normality assumptions were not met. We compared the sarcopenia group and 
control group using R Studio and created image visualizations for each group’s results. The significance level was 
set at *p < 0.1, **p < 0.01, and ***p < 0.001.

Ethical standards.  The study adhered to the principles of the Declaration of Helsinki and was approved 
by the IRB at Gyeongsang National University Hospital. (IRB No. GNUH 2022-01-032-008) All research proce-
dures were carried out with strict adherence to ethical standards, including protection of participants’ privacy, 
confidentiality, and rights.

Results
We conducted a normality test on each variable in both the sarcopenia group (n = 23) and control group (n = 60). 
The test indicated that the majority of variables in the sarcopenia group did not adhere to the normality assump-
tion (refer to Supplementary Table S2). Therefore, we compared the variables between the two groups using 
the Mann–Whitney U test. The measurement values are presented in Tables 1 and 2, and the p-values for each 
variable are shown at the bottom of each table. Table 1 presents the characteristics of the two groups using smart 
insole, while Table 2 presents the characteristics using pose estimation method (refer to Supplementary Figs. S1 
and S2). The smart insole provides a total of 6 variables (Total number of steps, Cadence, R double support, R 
single support, L double support, L single support) and similarly, the pose estimation provides results for 23 
variables representing each joint point. The p-values are provided for all 6 variables in the case of the smart 
insole, and only for 15 variables excluding the maximum and minimum values in the case of pose estimation. 
The description of the 23 variables provided by pose estimation is presented in Supplementary Table S3. In order 
to assess the detection accuracy of pose estimation using Mediapipe, key points representing the head, shoul-
ders, elbows, wrists, hips, knees, and ankles were utilized as reference points. The detection criterion was based 
on cases where the marker positions were flipped or estimation was not performed. A total of 100 images were 
evaluated for this purpose. The accuracy was determined by considering whether the estimation was successful 
for each of the 15 keypoints. The resulting detection accuracy for the 15 keypoints was measured at 89.23%.

The characteristics of the Sarcopenia and Control groups were investigated using smart insole technology, 
and the results are summarized in Table 1. The Sarcopenia group had a mean total number of steps of 84.32 steps 

Figure 4.   Visualization of Blaze Pose’s 33 key points in human pose estimation.
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and a cadence of 87.42 steps/min. For the R double support, R single support, L double support, and L single 
support means, the values were 17.44%, 36.30%, 17.00%, and 36.97%, respectively. In comparison, the Control 
group had a mean total number of steps of 88.32 steps and a cadence of 88.04 steps/min. The means for R double 
support, R single support, L double support, and L single support were 17.08%, 36.74%, 17.22%, and 37.22%, 
respectively. The Mann–Whitney U test revealed no significant differences between the two groups for any of 
the variables. However, caution should be taken when interpreting the results, as the high p-values for the total 
number of steps, cadence, R double support, R single support, L double support, and L single support suggest 
that small sample sizes may have influenced the findings.

The Dr.log site was used to extract joint point data from the image through pose estimation, and Dr.log 
DMS was then employed to identify time series patterns and characteristic values for coordinate information. 
The Mann–Whitney U test results classified the 15 variables studied into three groups based on their p-values. 
The first group, including knee mean (p = 0.433), ankle range (p = 0.252), and hip range (p = 0.294), had p-values 
greater than 0.1, indicating that these variables did not exhibit a significant difference between the two groups. 
The second group, consisting of hip mean, shoulder angle range, ankle mean, all max dif, hipankle dif, kneeankle 
dif, knee dif, ankle dif, and hip dif, had p-values less than 0.001, demonstrating a significant difference between 
the two groups. The third group, composed of hipknee dif and shoulder angle mean, had p-values of 0.003 and 
0.002, respectively, indicating that they also displayed a significant difference between the two groups, although 
to a lesser extent than the second group. In summary, the results suggest that using pose estimation reveals a 
significant difference in joint angle measurements between the two groups, which could be useful in understand-
ing the fundamental cause of movement pattern differences between them.

Discussion
There are different approaches to measure gait, with smart insoles and pose estimation being two commonly 
used methods. Smart insole is a device that can be inserted into a shoe to measure various parameters of the foot 
during gait, such as pressure distribution, force, and acceleration28,29. The device contains sensors that collect 
data, which is then sent to a computer for analysis. The benefits of using smart insoles include detailed informa-
tion about the foot’s biomechanics, ease of use, non-invasiveness, and no need for special setup29,30. In contrast, 
pose estimation is a computer vision technique that uses a camera to track joint movement in the body15,31. By 
recording a person’s movements as they walk or run, the software can estimate the position of joints in the body. 
The advantage of pose estimation is that it provides a comprehensive view of the entire body, including the limbs, 
spine, and pelvis, making it easier to study external variables such as gait asymmetry32. However, it can be more 
challenging to set up and requires more technical expertise.

There were significant differences between the two methods in this study. Smart insole primarily focuses on 
the foot, providing detailed information on foot biomechanics33. Specifically, there are areas that pose estima-
tion fails to detect, such as ground reaction forces on both feet, and it has advantages in calculating variables 
like single support and double support. It is more practical to use in clinical settings, as space limitations do 
not occur. However, smart insole may not provide a complete picture of the body’s movement during gait, 
leading to large deviations in the measured variables. Furthermore, in musculoskeletal patients, it is crucial to 
verify whether consistent time series patterns are present even when sufficient foot pressure is not applied. Pose 

Table 1.   Characteristics of sarcopenia group and control group measured using smart insole. *p-value < 0.1, 
**p-value < 0.01, ***p-value < 0.001.

Total number of 
steps (n)

Cadence
(steps/min)

R_double_
support
(%)

R_single_
support
(%)

L_double_
support
(%)

L_single_
support
(%) Observations

Sarcopenia

Mean 84.32 87.42 17.44 36.30 17.00 36.97 23

Median 88.00 89.00 17.35 35.81 17.00 37.34

Standard deviation 22.99 22.28 3.77 5.97 4.31 7.09

Range 87.00 79.00 13.36 24.91 17.10 28.54

Min 31.00 39.00 11.34 25.03 7.60 19.69

Max 118.00 118.00 24.70 49.94 24.70 48.23

Control

Mean 88.32 88.04 17.08 36.74 17.22 37.22 60

Median 87.50 91.50 18.97 38.48 19.31 37.58

Standard deviation 24.49 17.24 4.98 6.90 4.86 5.55

Range 115.00 68.00 19.92 30.36 17.89 25.79

Min 36.00 48.00 5.05 19.60 6.40 20.39

Max 151.00 116.00 24.97 49.96 24.29 46.18

Mann–Whitney 
U test

Total number of 
steps (n)

Cadence
(steps/min)

R_double_
support
(%)

R_single_
support
(%)

L_double_
support
(%)

L_single_
support
(%)

p-value 0.841 0.756 0.798 0.388 0.563 0.868
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Table 2.   Characteristics of sarcopenia group and control group measured using pose estimation. 
*p-value < 0.1, **p-value < 0.01, ***p-value < 0.001.

Knee_mean Knee_max Knee_min Knee_range Hip_mean Hip_max Hip_min hip_range

Sarcopenia

Mean 165.81 179.78 135.14 42.97 4.49 16.01 0.04 16.09

Median 165.48 179.90 135.84 43.08 4.24 16.06 0.03 16.04

Standard deviation 2.25 0.23 2.74 3.78 0.66 1.84 0.02 1.85

Range 9.50 0.80 9.19 19.64 2.81 8.82 0.10 8.81

Min 162.15 179.19 129.80 29.48 2.90 11.58 0.01 11.55

Max 171.64 179.98 138.98 49.11 5.71 20.40 0.11 20.36

Shoulder_angle_
mean

Shoulder_angle_
max

Shoulder_angle_
min

Shoulder_angle_
range Ankle_mean Ankle_max Ankle_min Ankle_range

Sarcopenia

Mean 148.29 178.81 91.63 87.26 126.40 148.17 103.95 44.61

Median 147.60 179.81 90.81 88.20 125.90 148.49 103.08 45.40

Standard deviation 7.82 2.58 1.66 2.57 2.61 1.56 2.95 3.03

Range 29.06 11.46 5.91 11.17 10.68 5.66 12.18 11.28

Min 131.41 168.54 90.01 78.52 121.79 144.15 100.63 37.44

Max 160.47 180.00 95.92 89.69 132.47 149.81 112.81 48.72

All_max_dif Hipknee_dif Hipankle_dif Kneeankle_dif Knee_dif Ankle_dif Hip_dif Observations

Sarcopenia

Mean 44.06 7.24 52.11 42.06 0.06 47.25 15.70 23

Median 43.04 7.28 51.45 39.68 0.05 45.09 16.05

Standard deviation 7.07 1.03 6.27 8.90 0.05 7.47 1.83

Range 28.11 4.86 27.47 32.26 0.19 28.96 8.82

Min 35.78 4.93 40.33 30.77 0.00 37.43 11.58

Max 63.89 9.79 67.80 63.03 0.19 66.39 20.40

Knee_mean Knee_max Knee_min Knee_range Hip_mean Hip_max Hip_min Hip_range

Control

Mean 165.33 179.46 137.11 44.02 5.72 18.30 0.06 16.10

Median 165.32 179.41 135.51 45.51 5.35 17.21 0.05 16.55

Standard deviation 2.27 0.30 4.37 4.61 1.31 2.91 0.05 1.87

Range 10.51 1.75 19.70 19.39 4.88 14.75 0.19 11.18

Min 161.13 178.21 130.74 29.48 4.11 11.58 0.00 11.06

Max 171.64 179.96 150.43 48.87 8.99 26.32 0.20 22.24

Shoulder_angle_
mean

Shoulder_angle_
max

Shoulder_angle_
min

Shoulder_angle_
range Ankle_mean Ankle_max Ankle_min Ankle_range

Control

Mean 154.05 179.48 91.29 89.85 123.03 146.52 102.69 45.76

Median 153.66 179.58 91.46 90.21 122.97 146.52 102.43 46.13

Standard deviation 3.90 0.65 1.50 2.22 1.87 1.86 1.77 2.19

Range 28.16 4.88 9.12 10.99 9.50 8.33 7.77 13.98

Min 131.41 175.11 86.28 84.52 120.11 141.52 100.11 41.15

Max 159.58 179.99 95.40 95.51 129.61 149.85 107.88 55.13

All_max_dif Hipknee_dif Hipankle_dif Kneeankle_dif Knee_dif Ankle_dif Hip_dif Observations

Control

Mean 52.61 7.97 62.69 52.91 0.10 62.84 36.51 60

Median 52.05 7.80 63.09 50.43 0.09 63.14 35.34

Standard deviation 6.16 0.99 4.12 6.56 0.05 5.11 8.35

Range 30.64 4.03 21.11 26.98 0.26 24.87 35.86

Min 36.00 6.14 51.12 42.46 0.02 47.68 21.58

Max 66.64 10.16 72.24 69.44 0.28 72.55 57.43

Mann–Whitney 
U test Knee_mean Knee_range Hip_mean Hip_range

Shoulder_angle_
mean

Shoulder_angle_
range Ankle_mean Ankle_range

p-value 0.433  < 0.001***  < 0.001*** 0.294 0.002**  < 0.001***  < 0.001*** 0.252

Mann–Whitney 
U test All_max_dif Hipknee_dif Hipankle_dif Kneeankle_dif Knee_dif Ankle_dif Hip_dif

p-value  < 0.001*** 0.003**  < 0.001***  < 0.001***  < 0.001***  < 0.001***  < 0.001***
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estimation provides a more comprehensive view of the entire body, detecting asymmetries and compensations 
in gait18,31,32. The study showed significant differences in most variables using pose estimation, particularly the 
angle of maximum opening in the shoulder, ankle, and stationary posture. However, there was also a limitation 
that measuring with pose estimation required sufficient space and proper filming location.

Patients with sarcopenia exhibit gait changes due to the progressive decline in skeletal muscle mass, strength, 
and function. These changes are characterized by decreased single support time and increased double support 
time, primarily resulting from reduced muscle strength and impaired balance34,35. However, in our study, the 
smart insole was unable to fully capture these distinctive gait characteristics. In contrast, pose estimation accu-
rately represented the gait cycle characteristics, as demonstrated in Tables 1 and 2. Specifically, the smart insole 
showed difficulty in identifying significant differences between the elderly patient group and the control group of 
relatively young and healthy individuals. On the other hand, pose estimation offered the advantage of estimating 
markers that could capture a wider range of functional variables. Compared to smart insole, pose estimation 
allowed for the consideration of a greater number of biomarkers related to various body functions. Therefore, 
using pose estimation for comparing the sarcopenia group with the non-sarcopenia group provided a broader 
perspective in assessing gait characteristics.

Research on sarcopenia is a rapidly evolving field, with ongoing efforts to identify digital biomarkers using 
various approaches. While previous studies have focused on using a single measurement device to identify 
biomarkers, it is becoming increasingly clear that a more comprehensive approach is needed. This requires the 
integration of multiple devices and variables to account for the complex nature of the disease. Therefore, further 
research is needed to combine the variables from existing smart insole and pose estimation studies to develop a 
predictive model and identify novel digital biomarkers.

Limitations
When conducting pose estimation for muscle function evaluation in sarcopenia, the following limitations exist: 
(1) Pose detection accuracy: lighting, camera angle, and clothing can limit the accuracy of pose estimation for 
sarcopenia diagnosis; (2) Environmental constraints: environmental factors such as background clutter and 
movement can hinder pose estimation’s ability to assess muscle function. Similarly, with the case of smart insoles, 
the following limitations exist: (1) Inaccuracy of sensors: The accuracy of smart insole’s IMU sensors can be 
affected due to the limitation of having only one IMU sensor for calibration purposes. Sensor drift, which refers 
to the gradual deviation of the sensor readings over time, can occur and cause inaccuracies in the collected data, 
which can affect the accuracy of the plantar pressure data results.; (2) Environmental constraints: Environmental 
conditions like uneven or slippery surfaces can impact the ability of smart insoles to evaluate muscle function.

Additionally, both methods have the following common limitations: (1) User dependence: the results of mus-
cle function evaluation using smart insoles and pose estimation can be affected by factors such as correct wear-
ing of insoles and the patient’s physical characteristics; (2) Limitations in capturing physical parameters: using 
smart insoles and pose estimation for muscle function evaluation can result in inaccuracies if all the important 
physical parameters like muscle tension and adjustment are not included; (3) Lack of standardized protocol: 
concerns about the reliability of results can arise due to the absence of a standardized protocol for the use of 
smart insoles in muscle function evaluation and the absence of standardized camera equipment and shooting 
method protocols in the case of pose estimation.

Lastly, in this study, a comparison was conducted between 23 sarcopenic patients and 60 individuals without 
sarcopenia. During the process of comparing the groups, characteristics such as gender and age were not matched 
due to the limitation of a small sample size. To address this, the analysis results of the groups with matched char-
acteristics are provided in Supplementary Table S4. In this case, when comparing the results with the original 
analysis in Tables 1 and 2, no significant differences in variables were observed.

Conclusion
In this study, a control group of 60 individuals with musculoskeletal disorders was compared to a group of 23 
individuals with sarcopenia using both smart insole and pose estimation. The results indicated that the smart 
insole did not show any significant differences between the two groups, whereas the pose estimation variables 
showed significant differences in 12 out of 15 variables. These findings highlight the importance of using mul-
tiple measurement methods to develop accurate models for predicting and classifying sarcopenia. With the 
recent advancements in measurement technology, the accuracy of sarcopenia diagnosis has improved, and it is 
expected that more digital biomarkers will be discovered and utilized in future treatments. This underscores the 
potential of utilizing digital technology to improve the diagnosis and treatment of musculoskeletal disorders 
and sarcopenia.

Data availability
The data used in this study were collected at Gyeongsang National University Hospital, and inquiries about the 
data should be directed to the author J.I.Y.
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