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Generative Adversarial Network-Based Image Conversion 
Among Different Computed Tomography Protocols and 
Vendors: Effects on Accuracy and Variability in Quantifying 
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Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using 
a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung 
disease (ILD) using a deep learning-based automated software.
Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images 
obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium 
kernels were classified into groups 1–7 according to acquisition conditions. CT images in groups 2–7 were converted into 
the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original 
and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was 
analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification 
by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system.
Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The 
overlap accuracies for quantifying total abnormalities in groups 2–7 improved after CT conversion (original vs. converted: 0.63 
vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of
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across different scan parameters and manufacturers [24]. 
However, the effects of CT-style conversion across variable 
scan parameters and vendors on ILD quantification in chest 
CT images have not been evaluated.

This study aimed to investigate whether the proposed 
CT conversion algorithm using a RouteGAN can improve 
the accuracy and variability of ILD quantification using 
a deep learning-based automated software on chest CT 
images across various parameters and scanners from various 
manufacturers.

MATERIALS AND METHODS

Datasets
This retrospective multicenter study was approved by the 

institutional review board of each participating institution 
and written informed consent was waived. Patients with ILD 
who underwent chest CT between January 2007 and March 
2020 were identified from seven tertiary referral centers. The 
inclusion criteria were as follows: 1) diagnosis of ILD with 
or without known causes verified through multidisciplinary 
discussion among experienced clinical experts, radiologists, 
and pathologists, following the diagnostic guidelines at 
each institution [27,28]; 2) available thin-section non-
enhanced chest CT obtained with standard- or low-radiation 
dose and reconstructed with sharp or other kernels; and 
3) no combined complications, such as pneumonia, lung 
cancer, or acute exacerbation at the time of CT acquisition. 
CT images obtained using scanners from four manufacturers, 
standard or low radiation doses, and sharp or medium 
kernels were collected and classified into seven groups 
according to the acquisition conditions (Group 1: vendor 
A, standard dose, and sharp kernel; Group 2: vendor 
B, standard dose, and sharp kernel; Group 3: vendor C, 
standard dose, and sharp kernel; Group 4: vendor B, low 
dose, and sharp kernel; Group 5: vendor C, low dose, and 
sharp kernel; Group 6: vendor D, standard dose, and sharp 
kernel; and Group 7: vendor A, standard dose, and medium 
kernel). The CT protocols, scanners, and manufacturers for 

INTRODUCTION

High-resolution computed tomography (CT) is essential 
for evaluating interstitial lung disease (ILD) [1-4]. 
However, objective and reproducible assessments of ILD 
by radiologists are limited, with wide variations in image 
interpretation [5,6]. Consequently, several automated 
quantitative imaging methods have been developed using 
either histogram- or texture-based analysis [7-12].

Quantitative assessment of ILD on CT is comparable to 
visual assessment of ILD on CT and correlates with measures 
of disease severity and pulmonary function [7,13-15]. 
The use of ILD quantification for prognostication and 
mortality prediction has been demonstrated in previous 
studies [16-18]. However, major issues have limited its 
widespread use. Various technical parameters related to CT 
acquisition, such as reconstruction kernel, reconstruction 
method, and radiation dose, can affect quantitative results 
[19-22]. Inherent CT characteristics, including texture, 
which vary depending on the manufacturer, may also affect 
quantification. Inconsistencies in these factors cause 
variations in quantification results, hindering the use of 
quantitative CT analysis in retrospective, longitudinal, or 
multicenter clinical studies.

Recently, attempts have been made to transform or 
standardize CT images using deep learning technology 
[23,24]. Previous studies have demonstrated the potential 
of convolutional neural network (CNN)-based CT conversion 
to reduce the effects of different reconstruction kernels 
on the emphysema index and radiomics [25,26]. However, 
the previous method required paired CT images obtained 
from the same raw data for algorithm training, and possibly 
performed CT conversion only between features of the 
paired dataset. Therefore, CT conversion across scanners 
with different manufacturers and acquisition parameters 
could not be performed. A previous study developed a CT 
conversion algorithm using a routable generative adversarial 
network (RouteGAN) that uses unsupervised image-to-image 
translation with unpaired CT data to convert CT images 

fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 
vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly 
or decreased slightly. The radiologists’ scores were significantly higher (P < 0.001) and less variable on converted CT.
Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different 
scan parameters and manufacturers in deep learning-based quantification of ILD.
Keywords: Interstitial lung disease; Computed tomography; Quantification; Artificial intelligence
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each group are summarized in Supplementary Table 1. A 
total of 98920 CT slices were initially collected from 818 
patients, of which 93911 CT slices from 668 patients were 
randomly selected and used to develop the CT conversion 
algorithm in a previous study [24]. The remaining 5009 CT 
slices from 150 individual patients (mean age: 67.6 ± 10.7 
years; 56 females) were included in this study to avoid 
overlap with the study population of the previous study 
[24]. A thoracic radiologist (H.J.H.; 12 years of experience 
in chest radiology) who was blinded to all measurements 
and results in the study selected 350 CT slices (50 per 
group) from 150 patients for the test set (Fig. 1) based 

on the following visual review criteria: 1) slices showed at 
least 10% extent of the ILD CT pattern; 2) slices showed no 
parenchymal abnormalities other than the ILD CT pattern; 
and 3) when selecting multiple slices from a patient, the 
slices were at least 10 slices apart. Full details of the data 
collection are described in the Supplementary Material.

CT Conversion and ILD Segmentation/Quantification on CT
We used a RouteGAN algorithm that uses unsupervised 

image-to-image translation with unmatched CT images 
[24]. This network can translate unpaired CT images from 
one acquisition protocol to another within the training set 

Patients with ILD from seven centers 
818 patients were included 

(CT slices = 98920)

150 patients were included 
(CT slices = 5009)

Test set: 1 to 5 CT slices showing ILD CT pattern were selected for each patient

Internal control Main analysis

Analyzed

Group 1 
(CT slice = 50)

Group 1 
(CT slice = 50)

Group 2 
(CT slice = 50)

Group 2 
(CT slice = 50)

Group 3 
(CT slice = 50)

Group 3 
(CT slice = 45)

Group 4 
(CT slice = 50)

Group 4 
(CT slice = 50)

Group 5 
(CT slice = 50)

Group 5 
(CT slice = 42)

Group 6 
(CT slice = 50)

Group 6 
(CT slice = 49)

Group 7 
(CT slice = 50)

Group 7 
(CT slice = 50)

Group 1 
Vendor A 

Standard dose 
sharp kernel 
Patients = 26

Group 2 
Vendor B 

Standard dose 
sharp kernel 
Patients = 33

Group 3 
Vendor C 

Standard dose 
sharp kernel 
Patients = 17

Group 4 
Vendor B 
Low dose 

sharp kernel 
Patients = 23

Group 5 
Vendor C 
Low dose 

sharp kernel 
Patients = 11

Group 6 
Vendor D 

Standard dose 
sharp kernel 
Patients = 22

Group 7 
Vendor A 

Standard dose 
medium kernel 
Patients = 18

   • ‌�Development of multi-domain 
conditional GAN for conversion of CT 
styles to those of Group 1 
(patients = 668, CT slices = 93911)

Excluded for (14 CT slices) due to failed quantification or suboptimal CT quality

Fig. 1. Flowchart of patient inclusion for the study. A total of 98920 CT slices were initially collected from 818 patients, of which 93911 
CT slices from 668 patients were randomly selected and used to develop the CT conversion algorithm in a previous study. The remaining 
5009 CT slices from 150 individual patients were included in this study. A thoracic radiologist, who was blinded to any measurements or 
results in the study, selected 350 CT slices (50 per group) from 150 patients for the test set, based on the visual review criteria. ILD = 
interstitial lung disease, CT = computed tomography, GAN = generative adversarial network
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(including across different scanner types and acquisition 
parameter differences). Group 1 images were set as the 
target CT style for CT conversion because the CNN-based ILD 
quantification software used in this study was developed 
mainly using CT images with the same acquisition protocol 
and scanner manufacturer as those in group 1 [29,30]. 
The original CT slices of Group 2 to 7 were converted into 
the target CT style using the RouteGAN (Fig. 2). Regional 
CT patterns of ILD, including honeycombing, reticulation, 
ground-glass opacity (GGO), consolidation, emphysema, 

and normal patterns, were segmented and quantified on 
both the original and converted CT slices of groups 2 to 7 
using a deep learning-based quantification software (Aview, 
Coreline Soft) [29,30]. The original CT slices of group 1 were 
also analyzed using the automated software to serve as an 
internal control. The total abnormalities were calculated 
as the sum of the extent of honeycombing, reticulation, 
GGO, consolidation, and emphysema, and the fibrosis score 
was defined as the sum of the extent of honeycombing and 
reticulation. In addition, a thoracic radiologist (H.J.H.; 12 

Fig. 2. Schematic flow diagram of the conversion of original computed tomography (CT) images to the target CT style (Group 1 CT style) 
using a routable generative adversarial network (RouteGAN). All 300 CT slices, 50 CT slices for each of the six groups, were converted to 
Group 1 CT style using the RouteGAN to assess the effect of CT style conversion on the quantification of CT patterns of interstitial lung 
disease (ILD). Quantification of regional CT patterns of ILD was performed on both original and converted CT images using deep learning-
based ILD quantification. For the reference standard quantification of ILD, a thoracic radiologist who was blinded to the quantification 
results of the software manually drew the six CT patterns of ILD on the original CT slices. The quantifications on the original or converted 
CT images were compared with the radiologist’s manual quantifications, which were used as the reference standard. CNN = convolutional 
neural network
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years of experience in chest radiology) who was blinded to 
the automated segmentation drew each CT pattern on the 
original CT slices of groups 1 to 7 using a manual drawing 
tool of the Aview software (Coreline Soft) to perform ILD 
segmentation to be used as the reference standard. 

Visual Assessment of the Accuracy of ILD Segmentation 
on CT

Five thoracic radiologists (H.Y.L., J.S.S., W.C.K., S.H.Y., 
and J.K.L. with 14, 17, 17, 8, and 9 years of experience 
in chest radiology, respectively) independently assessed 
the results of the automated segmentation of ILD on the 
original and converted CTs and the reference standard 
results manually drawn by a thoracic radiologist on the 
images in groups 2–7. The radiologists were blinded to 
whether the results were obtained by the automated 
software or a human (i.e., the reference standard) and 
whether the images were original or converted CT images. 
The radiologists scored the ILD segmentation accuracy on 
each image using a 10-point scale, considering the total 
extent of the ILD and each ILD pattern (see Supplementary 
Material for details).

Statistical Analysis
The accuracy of segmentation/quantification was analyzed 

using measures of spatial overlap accuracy and visual 
accuracy scores from the five radiologists. For the measures 
of spatial overlap accuracy, the dice similarity coefficient 
(DSC) and pixel-wise recall and precision were obtained by 
comparing ILD quantification on the original or converted 
CT images with the radiologist’s reference standard. These 
metrics were calculated for each individual CT pattern, total 
abnormalities, and fibrosis score as follows:

DSCA = 
2|S ∩ R|

|S| + |R|
,

pixel-wise recallA = 
|pixel number of S ∩ R|

|pixel number of R|
, and

pixel-wise precisionA = 
|pixel number of S ∩ R|

|pixel number of S|
,

where S is the area quantified as pattern A by the software 
in the original or converted CT, and R is the area quantified 
as A in the reference standard [31]. The differences in 
these metrics between the original and converted CT images 
were evaluated using paired t-tests. The average visual 
scores of the five radiologists were compared among CT 

types by a repeated-measures analysis performed using 
PROC MIXED in SAS (version 9.4; SAS Institute). The lack of 
independence between repeated observations by the same 
person was accounted for by including repeated statements 
in statistical routines. The effects of CT conversion with the 
RouteGAN on the variability of segmentation/quantification 
were not analyzed using any formal statistical tests. 
Statistical significance set as P < 0.05. Bonferroni 
corrections were used to account for multiple tests.

RESULTS

Patient Characteristics
Among the 350 CT slices from 150 patients of seven 

groups (mean age: 67.6 ± 10.7 years; 56 females), 
which were initially selected for the test dataset, 14 
were excluded because of suboptimal CT quality or failed 
quantification, and 336 CT slices were finally analyzed. 
Patient characteristics are summarized in Table 1.

Spatial Overlap Accuracy of the Automated ILD 
Quantification on Original and Converted CT Images

Table 2 shows the overall overlap accuracies of the 
quantified areas on the original and converted CT images 
in Group 2 to 7. All overlap accuracy metrics for total 
abnormalities were significantly higher after CT conversion 
(original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 
0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise 
precision; all P < 0.002). The overall DSCs of fibrosis score, 
honeycombing, and reticulation were significantly higher 
after CT conversion (original vs. converted: 0.32 vs. 0.64 for 
fibrosis score, 0.19 vs. 0.47 for honeycombing, and 0.23 vs. 
0.54 for reticulation; all P < 0.002). For other CT patterns, 
the overall DSCs did not change significantly for GGO and 
emphysema and was slightly lower for consolidation after 
CT conversion (original vs. converted: 0.08 vs. 0.08 for 
GGO, P = 0.631; 0.14 vs. 0.12 for emphysema, P = 0.037; 
and 0.14 vs. 0.07 for consolidation, P < 0.002). The overlap 
accuracies of the original CT images in Group 2 to 7 were 
lower than that in Group 1 for all CT patterns, except the 
pixel-wise precision of reticulation (Supplementary Table 2).

In the pixel-wise analysis, more pixels from more CT slices 
were correctly classified according to the fibrosis score, 
honeycombing, and reticulation after CT conversion (Fig. 3 
and Supplementary Fig. 1, Supplementary Table 3). However, 
fewer pixels were classified as GGO, consolidation, or 
emphysema in the converted CT quantification (Fig. 3 and 
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Supplementary Fig. 1). The pixel-wise recall of fibrosis score, 
reticulation, and honeycombing were significantly higher 
after CT conversion (original vs. converted: 0.26 vs. 0.62 for 
fibrosis score, 0.19 vs. 0.54 for reticulation, and 0.15 vs. 
0.46 for honeycombing, all P < 0.002). After CT conversion, 
the pixel-wise precision of reticulation was slightly higher 
(original vs. converted: 0.58 vs. 0.64, P < 0.002), whereas 
the fibrosis score and honeycombing were slightly lower 
(original vs. converted: 0.80 vs. 0.74 for fibrosis score, P < 
0.002; and 0.68 vs. 0.63 for honeycombing, P = 0.076), 

despite the fact that more pixels were classified into these 
patterns on the converted than on the original CT. The 
pixel-wise recall of GGO and consolidation were significantly 
lower, whereas that of emphysema was not significantly 
different after CT conversion (original vs. converted: 0.42 
vs. 0.19 for GGO, P < 0.002; 0.16 vs. 0.07 for consolidation, 
P < 0.002; and 0.13 vs. 0.09 for emphysema, P = 0.008) 
(Table 2). The pixel-wise precisions of these patterns were 
not significantly different after CT conversion. The increase 
in the pixel-wise recall of the fibrosis score, honeycombing, 

Table 1. Patient characteristics in the test set

Characteristics Total

Group 1
(Vendor A,

standard dose, 
sharp kernel)

Group 2
(Vendor B,

standard dose, 
sharp kernel)

Group 3
(Vendor C,

standard dose, 
sharp kernel)

Group 4
(Vendor B,
low dose,

sharp kernel)

Group 5
(Vendor C,
low dose,

sharp kernel)

Group 6
(Vendor D,

standard dose, 
sharp kernel)

Group 7
(Vendor A,

standard dose, 
medium kernel)

Patients 150 26 33 17 23 11 22 18
CT slices (analyzed) 350 (336) 50 (50) 50 (50) 50 (45) 50 (50) 50 (42) 50 (49) 50 (50)
Age, yr 67.6 ± 10.7*  
Sex, M:F 94:56
Disease

UIP 76 (50.7) 13 (50.0) 17 (51.5) 12 (70.6) 10 (43.5) 7 (63.6) 6 (27.3) 11(61.1)
NSIP 45 (30.0) 5 (19.2) 10 (30.3) 3 (17.6) 10 (43.5) 3 (27.3) 7 (31.8) 7 (38.9)
COP 14 (9.3) 6 (23.1) 2 (6.1) 1 (5.9) 0 (0) 1 (9.1) 4 (18.2) 0 (0)
CHP 3 (2.0) 0 (0) 2 (6.1) 0 (0) 0 (0) 0 (0) 1 (4.5) 0 (0)
Smoking-related ILD 12 (8.0) 2 (7.7) 2 (6.1) 1 (5.9) 3 (13.0) 0 (0) 4 (18.2) 0 (0)

Data are numbers of patients (%) or CT slices, unless specified otherwise.
*Data are expressed as mean ± standard deviation.
CT = computed tomography, M = male, F = female, UIP = usual interstitial pneumonia, NSIP = nonspecific interstitial pneumonia, COP = 
cryptogenic organizing pneumonia, CHP = chronic hypersensitivity pneumonitis, ILD = interstitial lung disease

Table 2. Spatial overlap accuracies of the automated ILD quantifications on the original and converted CT images in Group 2 to 7

CT pattern

Spatial overlap accuracy metric
DSC Pixel-wise recall Pixel-wise precision†

Original CT
(1)

Converted CT
(2)

Difference
[(2)-(1)]

Original CT
(1)

Converted CT
(2)

Difference
[(2)-(1)]

Original CT
(1)

Converted CT
(2)

Difference‡

[(2)-(1)]

Total abnormalities 0.63 ± 0.20 0.68 ± 0.18 0.06* 0.66 ± 0.23 0.70 ± 0.20 0.04* 0.68 ± 0.22 0.73 ± 0.19 0.05*
Fibrosis score 0.32 ± 0.28 0.64 ± 0.21 0.32* 0.26 ± 0.26 0.62 ± 0.23 0.37* 0.80 ± 0.27 0.74 ± 0.22 -0.06*
Honeycombing 0.19 ± 0.26 0.47 ± 0.31 0.28* 0.15 ± 0.24 0.46 ± 0.32 0.30* 0.68 ± 0.41 0.63 ± 0.37 -0.04
Reticulation 0.23 ± 0.22 0.54 ± 0.20 0.31* 0.19 ± 0.21 0.54 ± 0.23 0.37* 0.58 ± 0.34 0.64 ± 0.24 0.06*
Ground-glass opacity 0.08 ± 0.18 0.08 ± 0.17 -0.00 0.42 ± 0.41 0.19 ± 0.30 -0.23* 0.03 ± 0.10 0.04 ± 0.14 0.01
Consolidation 0.14 ± 0.24 0.07 ± 0.20 -0.07* 0.16 ± 0.28 0.07 ± 0.18 -0.09* 0.12 ± 0.26 0.12 ± 0.29 0.00
Emphysema 0.14 ± 0.25 0.12 ± 0.23 -0.02 0.13 ± 0.22 0.09 ± 0.19 -0.03 0.19 ± 0.37 0.23 ± 0.39 0.01

Data are presented as the mean ± standard deviation of the spatial overlap accuracy metrics of the CT slices.
*Indicates the difference in the overlap accuracy metrics between (1) and (2) is statistically significant (P < 0.002). P-values were 
calculated using paired t-tests. Significance level of 0.002 takes into account the Bonferroni correction for multiple tests, †The mean 
pixel-wise precisions of the original and converted CT images were calculated for those CT slices for which pixel-wise precision was 
available for both the original and converted CT images, ‡The difference in pixel-wise precision between the original and converted CT 
images and its statistical significance were calculated for those CT slices for which pixel-wise precision was available for both the original 
and converted CT images. 
ILD = interstitial lung disease, CT = computed tomography, DSC = dice similarity coefficient 
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and reticulation was greater than the decrease in the pixel-
wise recall of GGO, consolidation, and emphysema.

Spatial Overlap Accuracy of the Automated ILD 
Quantification Areas in Each Group

The DSCs of total abnormalities in the original CT were 
not significantly different among Group 2 to 7, whereas the 
DSC of the fibrosis score in Group 7 was significantly lower 
than that in all other groups (all P < 0.05). In all groups, 
the overlap accuracy metrics for total abnormalities were 
higher after CT conversion; however, the mean differences 
between the original and converted CT images were not 
statistically significant in groups 2, 5, and 7 for pixel-

wise recall (P = 0.009, 0.096, and 0.467, respectively) 
and in groups 5 and 6 for pixel-wise precision (P = 0.130 
and 0.112, respectively) (Table 3). For the fibrosis score, 
the DSC and pixel-wise recall were significantly higher 
in all groups after CT conversion (P < 0.008). The pixel-
wise precision of the fibrosis score was slightly lower in all 
groups, but not statistically significant in groups 2, 5, 6, 
and 7 after CT conversion; however, the increase in pixel-
wise recall was higher than the decrease in pixel-wise 
precision in all groups.

 
Visual Accuracy Scores for ILD Segmentation

The radiologists visually scored the accuracy of ILD 

Fig. 3. Confusion matrixes of pixel-wise analysis of interstitial lung disease (ILD) quantification on the original and converted computed 
tomography (CT) images in group 2 to 7 in comparison with the radiologist’s quantifications. The predicted labels of the original and 
converted CT quantifications of ILD are shown along the x-axis, and true labels (i.e., the reference standard quantification by a thoracic 
radiologist) are shown along the y-axis. Confusion matrixes show the ratio of 

|pixel number of S ∩ R|
|pixel number of R| , where S is the area quantified by a software 

as one of the six patterns in the original or converted CT images, and R is the area quantified as one of six patterns in the reference 
standard. The numbers in parentheses are pixel numbers of S ∩ R. Many pixels that were incorrectly classified as ground-glass opacity (GGO) 
or reticulation on the original CT images were correctly classified as honeycombing or reticulation on the converted CT images. For GGO 
patterns, some pixels incorrectly classified as reticulation after CT conversion were correctly classified as GGO on the original CT images.
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segmentation in each of the three types of CT images 
(original CT, converted CT, and reference standard) in 286 
CT slices from groups 2 to 7, and a total of 858 CT slices 
were evaluated. The overall visual accuracy scores differed 

significantly across the CT types (P < 0.001) (Table 4); the 
highest score was for the reference standard, followed by 
the converted CT and the original CT (Figs. 4, 5). The overall 
mean accuracy scores were 8.54 for the reference standard, 

Table 4. Visual accuracy scores in the ILD CT segmentation 

Original CT 
(automated) 

Converted CT 
(automated)

Reference standard 
(original, manual)

P Post-hoc test

Overall (Group 2 to 7) 6.35 ± 2.49 7.64 ± 1.94 8.54 ± 1.60 < 0.001* RS > Conv > ORIG†

Group 2 6.04 ± 2.57 7.52 ± 2.13 8.79 ± 1.42 < 0.001* RS > Conv > ORIG† 
Group 3 6.81 ± 2.32 7.54 ± 2.16 8.59 ± 1.34 < 0.001* RS > Conv > ORIG†

Group 4 6.78 ± 2.07 7.56 ± 1.84 8.39 ± 1.53 < 0.001* RS > Conv > ORIG†

Group 5 7.11 ± 1.96 7.72 ± 1.77 8.25 ± 1.79 < 0.001* RS > Conv > ORIG†

Group 6 6.79 ± 2.31 7.93 ± 1.58 8.39 ± 2.00 < 0.001* RS > Conv > ORIG†

Group 7 4.74 ± 2.80 7.56 ± 2.09 8.77 ± 1.39 < 0.001* RS > Conv > ORIG†

Data are presented as mean ± standard deviation of the average of the visual scores of five readers of each CT slice. Visual accuracy 
scores are defined as the degree of agreement with the readers’ subjective segmentation of ILD CT patterns: 1 = agreement from 0 to 9%, 
2 = 10% to 19%, 3 = 20% to 29%, 4 = 30% to 39%, 5 = 40% to 49%, 6 = 50% to 59%, 7 = 60% to 69%, 8 = 70% to 79%, 9 = 80% to 
89%, and 10 = 90% to 100%.
*P-value was calculated using a repeated-measures analysis, †Indicates that the post-hoc tests among RS, Conv, and ORIG are statistically 
significant.
ILD = interstitial lung disease, CT = computed tomography, RS = reference standard, Conv = Converted, ORIG = original 

Fig. 4. Example of the conversion of group 3 computed tomography (CT) slices of a man with interstitial lung disease (ILD) into 
the target CT style using a routable generative adversarial network, and the quantification of ILD on the original CT, converted CT, 
and radiologist’s reference standard. The dice similarity coefficient (DSC) values of the quantified total abnormalities, fibrosis score, 
honeycombing, reticulation, and ground-glass opacity (GGO) on the original CT images were 0.86, 0.44, 0.50, 018, and 0.04, respectively, 
with the radiologist’s quantification used as the reference standard. After CT image conversion, the DSC values were 0.88, 0.88, 0.78, 0.71, 
and 0.18 for total abnormalities, fibrosis score, honeycombing, reticulation, and GGO, respectively, on the converted CT images, which 
were higher than on the original CT images. The five radiologists’ mean visual accuracy scores of the segmentations on the original, 
converted, and reference standard images were 5.40 ± 1.35, 6.80 ± 1.17, and 8.80 ± 1.17, respectively. CNN = convolutional neural 
network

Original CT image

ILD quantification (CNN)

Converted CT image

ILD quantification (CNN) ILD quantification - gold standard

Honeycombing

Reticulation

Ground glass opacity

Consolidation

Emphysema

Normal
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which is close to a score of 9, indicating 80%–89% agreement 
with the radiologists’ segmentation; 7.64 for the converted 
CT, indicating 70%–79% agreement; and 6.35 for the original 
CT, indicating 60%–69% agreement. Visual accuracy scores 
were significantly highest for the reference standard, followed 
by the converted CT and original CT in all groups (all P < 
0.001). The average visual scores of Group 2 to 7 showed a 
wide range from 4.74 to 7.11 on the original CT, but became 
similar among the groups, ranging from 7.52 to 7.93, with 
decreased variability after CT conversion (Table 4).

DISCUSSION

The quantification of ILD is dependent on the 
characteristics of CT images, which are affected by technical 
parameters and manufacturers. Our study quantitatively 
and visually demonstrated that the use of a RouteGAN to 
convert CT images with various acquisition conditions to 
CT images with a particular acquisition condition could 
improve the accuracy and variability of deep learning-
based quantification of regional CT patterns of ILD, such as 
fibrosis score, honeycombing, and reticulation, as well as 

the total abnormalities of ILD. 
Previous studies using texture-based quantification have 

demonstrated the value of quantitative ILD imaging [8,13-18]. 
However, these studies were conducted in a single or a few 
institutions. CT quantification of ILD is based on complex 
texture analysis of the relationships between adjacent pixels 
and CT densities, and is therefore inherently sensitive to 
variations caused by technical parameters. This limitation 
is an important hurdle in the application of quantitative 
ILD imaging to various CT datasets. In our study, the 
accuracy of a deep learning-based ILD quantification system 
developed using mainly CT images with particular technical 
parameters was limited when applied to various parameters 
and manufacturers. 

To apply quantification to various CT datasets, 
standardization of the input images to the features of the 
optimized CT parameters for quantitative imaging is a viable 
option. Recently, deep learning-based CT conversion using a 
supervised learning method was applied to the emphysema 
index and radiomics in different reconstruction kernels 
[25,26]. However, the previous method requires paired CT 
datasets and possibly performs only between the features 

Fig. 5. Example of the conversion of a group 4 computed tomography (CT) slice of a male patient with interstitial lung disease (ILD) into 
the target CT style using a routable generative adversarial network, and the quantification of ILD on each CT image. On the original CT 
images, the dice similarity coefficient (DSC) values of total abnormalities, fibrosis score, honeycombing, and reticulation quantifications 
were 0.78, 0.59, 0.00, and 0.60, respectively. After CT image conversion, the DSC values on the converted CT images were 0.86, 0.85, 0.14, 
and 0.76 for total abnormalities, fibrosis score, honeycombing, and reticulation, respectively. The five radiologists’ mean visual accuracy 
scores of the segmentations on the original, converted, and reference standard images were 7.20 ± 1.60, 8.60 ± 0.80, and 9.00 ± 0.89, 
respectively. CNN = convolutional neural network

Original CT image Converted CT image

ILD quantification (CNN)ILD quantification (CNN) ILD quantification - gold standard

Honeycombing

Reticulation

Ground glass opacity

Consolidation
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of paired datasets. A RouteGAN, which uses unsupervised 
image-to-image translation with unpaired CT images, 
enables image conversion simultaneously across different 
parameters, including reconstruction kernel, radiation dose, 
and scanner manufacturer. Although this method requires a 
relatively large number of CT images for training, it is easier 
to prepare multiple training datasets because the images can 
be unpaired according to parameters and manufacturers and 
unlabeled with disease patterns. Furthermore, this method 
enables the addition of datasets after initial algorithm 
training, thereby possibly broadening the scope of conversion 
to various CT parameters [24]. Recently, Lee et al. [32] 
applied CT image conversion using a generative adversarial 
network (GAN) in radiomics and showed that the synthesis of 
standard CT images using a GAN enhances the reproducibility 
of radiomics features across various CT protocols and 
scanners in a phantom setting. We believe that this method 
may promote the use of quantitative ILD imaging in clinical 
practice and in longitudinal multicenter studies with CT 
images under various acquisition conditions and its use in the 
assessment of incidental ILD or interstitial lung abnormalities 
detected using non-dedicated CT protocols. 

Another approach for applying ILD quantification to 
various CT datasets involves training the quantification 
algorithm with a heterogeneous array of technical 
parameters [29,33], which does not require a CT conversion 
process. However, collecting a large dataset with varied CT 
parameters and manufacturers for patients with particular 
diseases may be challenging. In addition, the manual 
labeling of each CT pattern of ILD is required for algorithm 
training, which would be difficult and time-consuming to 
perform, even for expert radiologists. 

 This study implemented several metrics, including the DSC 
and pixel-wise analysis [31], to evaluate the quantification 
accuracy for multiple CT patterns. We converted the CT 
images of Group 2 to 7 into the CT style of Group 1 using a 
RouteGAN, resulting in increased extents of the segmented 
fibrosis score, honeycomb, and reticulation and decreased 
extents of the segmented GGO and consolidation. These 
trends may be the main cause of the improvement or non-
improvement of the spatial overlap metrics in this study. 
All overlap metrics showed improved quantification of total 
abnormalities and reticulation after CT conversion but not 
necessarily an improvement in other patterns. However, the 
decrease in the overlap metrics were either not statistically 
significant or were much smaller than the increase in 
the DSC and pixel-wise recall of fibrosis, honeycombing, 

and reticulation. The negative results in improving the 
quantification of emphysema and consolidation could be 
caused by insufficient training on CT conversion for kernel 
and radiation dose factors, which may affect the texture of 
these patterns. In addition, the relatively small structural 
size of the emphysema or consolidation could affect DSC 
after CT conversion [34]. Improvement in quantification 
after CT conversion may be limited to certain CT patterns 
of ILD. However, given that the total extent of ILD and 
CT patterns, such as fibrosis score, honeycombing, and 
reticulation, are important for evaluating disease severity 
and outcome prediction in ILD, our method may be helpful 
for the accurate evaluation of ILD on CT images under 
various acquisition conditions.

Our study had several limitations. First, we used a single-
expert-based manual segmentation of each CT pattern 
as the reference standard for evaluating spatial overlap 
accuracy. Using two CT images of each ILD patient in 
different acquisition settings would be ideal; however, 
this is challenging because of unnecessary radiation 
exposure. Manual segmentation is inherently subjective 
and biased. However, readings by five thoracic radiologists 
showed approximately 80%–89% agreement in subjective 
segmentation, suggesting that the use of a single radiologist 
to establish the reference standard did not bias our results. 
Second, our study was conducted on only seven groups of 
CT images classified according to acquisition conditions that 
are most widely used in ILD evaluation. However, other CT 
parameters should be evaluated to expand the applicability 
of our results. Third, we conducted our study on individual 
slices rather than on patients, and parenchymal abnormalities 
were not observed or were minimal in some slices, making it 
difficult to evaluate the CT conversion effect by DSC or pixel-
wise analysis on a per-patient basis. In addition, the ILD 
quantification software used analyzes on a per-slice basis 
of the whole CT volume and not by 3D volume. To evaluate 
the impact of CT conversion on the clinical relevance of 
ILD quantification, an analysis of the whole CT volume 
would be more appropriate. Fourth, we analyzed a small 
number of CT slices, which may have limited the statistical 
power. Fifth, ILD quantification was performed using a 
single software package (Aview, Coreline Soft). Our results 
should be confirmed using other automated segmentation 
tools. Finally, the effect of CT conversion on the clinical 
application of ILD quantification was not evaluated. Previous 
studies have reported the clinical value of quantitative ILD 
imaging [13,17,35]. However, its usefulness across various 
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CT scans remains unknown and should be evaluated in 
future studies.

In conclusion, CT image conversion using a RouteGAN 
can improve the accuracy and variability of CT images 
obtained using different parameters and scanners with 
different manufacturers in deep-learning-based automated 
ILD quantification. This method is expected to provide a 
feasible quantification that is robust to variations in CT 
parameters and machine settings, enabling quantitative 
analysis across inconsistent CT datasets, such as those 
resulting from retrospective, longitudinal, or multicenter 
studies, as well as those acquired in clinical practice. 
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