
AMYLOID-ββ: A PEPTIDE INVOLVED IN TWO PATHOLOGIES - 
ALZHEIMER’S DISEASE (AD) AND CEREBRAL AMYLOID  
ANGIOPATHY (CAA)

Amyloid-β is generated during neuronal activity by the amyloid 
precursor protein (APP), a transmembrane protein [1, 2]. In non-
pathological conditions, APP is first cleaved by α-secretase, pre-
venting the formation of amyloid-β, and the subsequent carboxy-
terminal fragment is then cleaved by γ-secretase [3], resulting in 

non-aggregating products [4]. However, under pathological con-
ditions, APP is first cleaved by β-secretase instead of α-secretase, 
and the subsequent γ-secretase cleavage results in the formation of 
soluble, monomeric amyloid-β. The most commonly reported sol-
uble monomeric isoforms of amyloid-β are amyloid-β1-38 (<20%), 
amyloid-β1-40 (<80%), and amyloid-β1-42 (10%) [5, 6]. Amyloid-β1-40 
is more likely to be deposited in the vascular walls, as seen in Ce-
rebral amyloid angiopathy (CAA) [7], whereas amyloid-β1-38 is 
less likely to aggregate in either the vessel walls or the brain [8, 9]. 
Amyloid-β1-42, with two extra amino acids, is more hydrophobic 
than amyloid-β1-40, making it prone to forming insoluble aggre-
gates that lead to plaque formation [10, 11]. These plaques differ in 
location, composition, and distribution. CAA plaques are perivas-
cular and composed of amyloid-β1-40, while parenchymal plaques 
are diffuse and composed of amyloid-β1-42. CAA plaques increase 
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the risk of hemorrhage, while parenchymal plaques contribute 
to cognitive decline in Alzheimer’s disease (AD). Understand-
ing these differences is essential for effective treatment strategies. 
These distinct plaque formations are considered major character-
istics of AD and CAA, respectively [12, 13].

Amyloid-ββ in AD: risk factors and genetics 

AD is a slowly progressive neurological disorder that poses 
significant health-care challenges in the twenty-first century [14, 
15]. This disease is characterized by a range of symptoms, includ-
ing memory loss, cognitive decline, personality changes, and 
impaired daily functioning. These symptoms are associated with 
the accumulation of extracellular amyloid-β (diffuse or insoluble 
plaques) and intraneuronal neurofibrillary tangles, which can 
trigger processes like necroptosis and ferroptosis, as well as neu-
roinflammation [16-18] (Fig. 1). Amyloid-β1-42 is the main com-
ponent of amyloid plaques in AD brains, while amyloid-β1-40 is 
the main component of vascular amyloid deposits found in CAA 

[19, 20]. The risk factors for developing AD include aging, sex, 
low educational and occupational status, low mental and physical 
activity, cardiovascular risk factors, hyperhomocysteinemia, smok-
ing, obesity, and diabetes mellitus [19, 21]. Additionally, a typical 
hereditary risk factor for AD is apolipoprotein E (ApoE) gene 
mutation [22]. While sporadic AD, which is commonly referred 
to as late-onset AD, is seen in people over the age of 65 [23] and 
was previously thought to have no clear genetic component, recent 
Genome-Wide Association Studies have identified several genetic 
risk factors that are associated with the disease [24]. In contrast, 
early-onset familial AD, which affects those under the age of 65 
[23], is caused by mutations in the presenilin-1 and 2 (PS1/PS2) 
and APP genes [25, 26]. The most common amyloid-β mutations 
that cause familial AD include English (H6R), A2V (A2V), Tot-
tori (D7N), K16N (K16N), Osaka (E22Δ), Flemish (A21G), Italian 
(E22K), Arctic (E22G), Dutch (E22Q), Iowa (D23N), Swedish 
(KM670/671NL), Piedmont (L34V), and Indiana (V717F) [27, 
28]. The familial forms of AD are mostly noticeable by increased 

Fig. 1

Fig. 1. Reduced clearance of amyloid-β in brain resulting in sporadic AD (amyloid-β deposition in parenchyma) and CAA (amyloid-β deposition in 
blood vessels).
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kinetics of amyloid-β aggregation [27], which results in an early 
age of onset. Similarly, multiple mutations in amyloid-β sequence 
and other aggregation-prone proteins (ABri and Adan) are espe-
cially linked to early-onset aggressive forms of CAA and related to 
dementia with cerebral hemorrhage [19, 29]. 

Amyloid-ββ in CAA: risk factors and genetics

The main characteristic of CAA is the deposition of amyloid-β 
in the tunica media and adventitia of the arterioles and/or cap-
illaries in the cerebral cortex and leptomeninges (Fig. 1) [30]. 
Amyloid-β1-40 is typically deposited in the vascular wall of CAA, 
while amyloid-β1-42 is primarily deposited in the senile plaques of 
AD. Depending on whether amyloid-β is present on cortical capil-
laries, sporadic CAA is divided into type 1 and type 2: CAA-type 
1 is defined as the deposition of amyloid-β on cortical capillaries, 
but CAA-type 2 is not related with amyloid-β in the cortical capil-
laries [31]. Hereditary CAA is caused by Dutch, Arctic, Italian, 
Flemish, Iowa, Piedmont mutations in APP gene, Icelandic muta-
tion in CST3 gene, and the British and Danish mutations in the 
ITM2B gene [19, 32]. CAA is recognized as a significant risk factor 
for “white matter hyperintensities” [33], and it occurs in 98% of 
AD patients, with roughly 75% of these cases categorized as severe 
CAA [34]. Furthermore, CAA is present in approximately 30% of 
non-demented elderly [34] and clinical studies have demonstrated 
a significant association between CAA and cognitive dysfunction 
[35, 36]. CAA is also closely linked to cerebral hemorrhage and 
weakens vascular walls as a result of amyloid deposits. Specific 
point mutations within the amyloid-β have been found including 
Iowa-type (D23N) and Dutch-type (E22Q), which cause familial 
forms of CAA [36].

The series of pathophysiological events that promote amyloid-β 
buildup in the brain and blood vessels are still not completely un-
derstood [37]. However, pathological, genetic, and functional stud-
ies suggest that the pathologies in both AD and CAA are driven by 
impaired amyloid-β clearance [12, 38]. Therefore, a deep under-
standing of amyloid-β clearance could lead to effective approaches 
to reduce excessive amyloid-β buildup in the brain and slow the 
progression of both AD and CAA [6, 39]. This review will focus 
on recent findings of amyloid-β clearance system in the body and 
try to explore potential interventional targets for future prevention 
and treatment of AD and CAA. 

AMYLOID-ββ CLEARANCE IN THE BRAIN 

The brain employs multiple mechanisms for amyloid-β clear-
ance, which include both enzymatic and non-enzymatic pathways 
[40]. Recent studies have highlighted the potential therapeutic 

benefits of targeting amyloid-β-degrading enzymes (AβDEs) in re-
ducing amyloid-β pathology. Modulating the expression or activity 
of AβDE has been found to effectively regulate levels of amyloid-β 
and improve cognitive deficits in transgenic animal models [41, 
42]. In parallel to the enzymatic pathway described later, the non-
enzymatic clearance pathway of amyloid-β involves the active par-
ticipation of glial cells (microglia and astrocytes), the blood-brain 
barrier, interstitial fluid bulk flow (perivascular drainage and the 
glymphatic system), and cerebrospinal fluid absorption clearance 
[40]. Disturbances in any of these clearance pathways can signifi-
cantly contribute to the accumulation of amyloid-β in the brain.In 
this section, we will address recent progresses in both enzymatic 
and non-enzymatic mechanisms of amyloid-β clearance in the 
brain and explore the factors that contribute to the disruption of 
these pathways.  

The role of enzymes in clearing amyloid-ββ in the brain

In the brain, both intracellular and extracellular amyloid-β are 
primarily degraded and cleared through the proteolytic machin-
ery [40, 43]. To date, researchers have identified multiple amyloid-
β-degrading proteases (AβDPs), numbering around 20 [44, 
45]. These enzymes have an affinity for certain domains of the 
amyloid-β amino acid sequence, enabling them to cleave and con-
vert amyloid-β proteins into shorter, less toxic forms [46-48]. The 
different categories of AβDPs include zinc metalloendopeptidase, 
thiol-dependent metalloendopeptidase, serine/cysteine proteases 
and matrix metalloproteinases and others as shown below (Fig. 2). 

Zinc metalloendopeptidase

The majority of AβDPs currently recognized are zinc metal-
loproteases possessing the zinc-binding motif, and they can be 
categorized into the following groups [49]. 

Neprilysin
Neprilysin (NEP) is a plasma membrane glycoprotein belonging 

to the neutral zinc metalloendopeptidase family. It is also referred 
to as neutral endopeptidase-24.11, enkephalinase, common acute 
lymphoblastic leukemia antigen, or neutrophil antigen cluster dif-
ferentiation antigen 10 (CD10) [50]. NEP is a major AβDP that 
can cleave both monomeric and oligomeric forms of amyloid-β in 
the brain and periphery [41, 51]. Its expression is found in vascular 
smooth muscle cells and pyramidal neurons in the cerebral vas-
culature and neocortex of the brain [52]. Several lines of evidence 
suggest that NEP plays a role in the pathology of AD and CAA [53, 
54], indicating an inverse relationship between NEP activity and 
brain amyloid-β levels [55]. NEP deficiency caused by genetic fac-
tors results in abnormal amyloid-β accumulation in the brain [56, 
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57]. Conversely, increasing NEP expression and activity by direct 
injection [58] or overexpression in the brain or peripheral tissues 
[59-62] can significantly reduce amyloid-β burden and improve 
cognitive impairment [41, 63, 64]. 

Recent studies have also confirmed a correlation between NEP 
and amyloid-β degradation/clearance in AD and CAA [54, 65-
67]. NEP has been found to metabolize not only amyloid-β1-40 and 

a partial structure of amyloid-β (amyloid-β1-16) but also a peptide 
segment generated by the breakdown of amyloid-β1-40 by insulin-
degrading enzyme (IDE) [68]. Additionally, loading NEP into 
collagen hydrogels as a vehicle and delivering intranasally has 
been shown to clear plaques in a transgenic mouse model [69]. To-
gether with the latest findings, it is evident that NEP is crucial for 
amyloid-β clearance, and its dysfunction significantly contributes 

Fig. 2. Clearance mechanisms for amyloid-β in the brain and periphery. Central Clearance of amyloid-β in the brain. In the brain, amyloid-β clearance 
occurs through (1) enzymatic and (2) non-enzymatic pathways. Enzymatic clearance involves multiple amyloid-β-degrading enzymes (AβDPs) such as (i) 
zinc metalloendopeptidase, (ii) thiol-dependent metalloendopeptdiase, (iii) serine protease, (iv) cystein protease, and (v) matrix metalloproteinase. Non-
enzymatic clearance mechanisms include clearance through (1) BBB, (2) cellular-mediated clearance involving (i) neurons, (ii) microglia, (iii) astrocytes, 
(iv) endothelial cells and (v) pericytes. (3) intestinal fluid (ISF) bulk-flow-mediated clearance through the perivascular drainage or the glymphatic path-
way and (4) cerebrospinal fluid (CSF)-mediated clearance, which involves absorption into the circulatory system or the lymphatic system. Peripheral 
clearance of amyloid-β in blood or peripheral organs. In blood, amyloid-β is degraded or cleared by proteases, AβDPs, blood cells such as monocytes or 
neutrophils, or transported by carriers such as erythrocytes, albumin, and lipoproteins to peripheral organs, where itis degraded by macrophages in the 
spleen or hepatocytes or excreted via the liver or kidney. Abbreviations: BBB, blood-brain barrier; RAGE, advanced glycosylation end product specific 
receptor; CSF, cerebrospinal fluid; LRP1, Low density lipoprotein receptor-related protein 1, ISF, interstitial fluid; ABC transporters, ATP-binding cassette 
transporter; BCSFB, blood-CSF barrier.

Fig. 2
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to amyloid-β accumulation in the body.

Angiotensin-converting enzyme 
Angiotensin-converting enzyme (ACE; peptidyl-dipeptidase 

A; EC 3.4.1.5.1) is a widely expressed zinc metalloprotease in the 
body, including human brains where it is found in pyramidal neu-
rons in the cortex and cerebral vasculature [70]. Several genetic, 
biochemical and cell biology studies have supported the idea that 
ACE plays an essential role in regulating amyloid-β metabolism 
[71, 72]. In vitro  studies have demonstrated that ACE can cleave 
amyloid-β between Asp7 and Ser8, leading to inhibition of aggre-
gation, deposition, fibril formation, and associated cytotoxicity of 
amyloid-β [47, 73, 74]. However, the effects of ACE on steady-state 
amyloid-β concentration in animals studies remain inconclusive. 
Although ACE-deficient mice and mice treated with ACE inhibi-
tors did not consistently show changes [71, 75], there is a report 
that the treatment of transgenic mice with captopril, another ACE 
inhibitor, promotes amyloid-β1-42 deposition in the brain [76]. 
Overall, the effects of ACE on amyloid-β metabolism in animal 
studies are not fully understood [70]. 

More recently, molecular modelling and mass spectrometry 
studies have provided additional evidence of a strong interaction 
between ACE or N-domain of ACE and amyloid-β accumula-
tion in the brain [77, 78]. Rocha et al. found a positive correlation 
between ACE levels and amyloid-β in AD patients, supporting the 
idea that ACE is linked to amyloid-β pathology [79]. 

The findings derived from both in vitro and in vivo studies reveal 
significant inconsistencies, presenting considerable challenges in 
scientific research. These discrepancies can be attributed, in part, 
to variations in the methods employed to measure ACE and the 
unique characteristics of the samples tested. Additionally, it is plau-
sible that compensatory mechanisms involving other amyloid-β 
degrading enzymes, such as neprilysin, insulin-degrading enzyme, 
and endothelin-converting enzyme, may offset the observed acute 
reduction in ACE activity in vivo. Furthermore, insights gleaned 
from genetic studies may help elucidate the disparities surround-
ing ACE activity/levels in amyloid pathology. Notably, a com-
prehensive meta-analysis has demonstrated a robust correlation 
between the presence of an insertion (I) polymorphism within 
intron 16 of ACE and an increased risk of AD, while the deletion 
(D) variant appears to provide protection [76, 79-81]. 

Given the current inconsistencies and recent research find-
ings, it is crucial to acknowledge the controversial role of ACE in 
amyloid-β clearance in the brain. It is strongly recommended to 
promote future research to address these existing disparities and 
to gain a clearer understanding of the specific function of ACE in 
clearing amyloid-β. Such insights could potentially prove valuable 

in preventing the buildup of amyloid-β in the brain, which is a 
characteristic feature of conditions like AD [82] and CAA [83].

Endothelin-converting enzyme 
The endothelin-converting enzymes (ECEs) are membrane-

bound proteases that belong to M13 zinc metallopeptidases 
family. They are named after their ability to convert the inactive 
precursor big endothelin into the potent vasoactive peptide endo-
thelin-1 [84]. Two types of ECE have been identified so far: ECE-1, 
which is found in both vascular and nonvascular cells in all organs 
[85], and ECE-2, which is predominantly expressed in the brain 
and neural tissues, including the cerebral cortex, cerebellum, and 
adrenal medulla [86]. The expression level and activity of ECE are 
strongly correlated with amyloid-β deposition and the onset of 
AD [85, 86]. Importantly, evidence from cultured cells and animal 
models has shown that amyloid-β is a physiologically significant 
substrate of ECE [86, 87]. For example, in vivo studies of ECE de-
ficient mice (ECE-1 and ECE-2) have shown that both genotypes 
have higher amyloid-β levels than wild-type mice, indicating that 
these ECEs are AβDPs in vivo [86, 88]. Conversely, overexpression 
of ECE reduces amyloid-β deposition [87, 88]. In vitro studies have 
also found that ECE can hydrolyze amyloid-β at several sites [89]. 

In conclusion, the reviewed studies offer compelling evidence 
supporting the crucial role of ECE as a significant amyloid-β 
degrading enzyme in preventing the buildup of amyloid-β in the 
brain. Both in vitro and in vivo investigations have demonstrated 
that overexpression of ECE leads to reduced amyloid-β levels, 
while inhibiting ECE activity results in increased amyloid-β ac-
cumulation. These findings underscore the therapeutic potential 
of targeting ECE to modulate amyloid-β levels and potentially at-
tenuate the progression of disease pathology. Further exploration 
of ECE and its enzymatic mechanisms holds promise in providing 
valuable insights into preventing the amyloid-β buildup observed 
in AD and CAA. By unraveling the intricate workings of ECE, we 
may unlock new avenues for intervention and contribute to the 
development of novel treatments aimed at mitigating the impact 
of amyloid-β pathology. 

Thiol-dependent metalloendopeptidase

Thiol-dependent metallo-endopeptidase, also known as Pz-pep-
tidase, endooligopeptidase A, collagenase-like peptidase, soluble 
metallo-endopeptidase and endopeptidase [90], is expressed in 
the brain [91] and play a crucial role in the degradation of small 
peptides, including glucagon, insulin, and atrial natriuretic peptide 
and amyloid-β [92, 93]. The highly conserved thiol metalloprote-
ase insulin-degrading enzyme (IDE), which is one of the enzymes 
responsible for removing amyloid-β from the brain, is now con-
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sidered a key component in the amyloid-β clearance process [91], 
as discussed below. 

Insulin degrading enzyme (IDE, EC 3.4.24.56), also known as in-
sulinase or insulysin, is a neutral thiol metalloprotease [94] found 
in several tissues, including skeletal muscle, skin, tongue, and testes 
[94, 95] and the brain [91, 96]. IDE is evolutionally conserved and 
developmentally regulated. Its physiological role encompasses 
several cellular functions as reviewed in Authier et al. [97]. IDE has 
been particularly well-known for degrading several peptides, in-
cluding amylin, glucagon, calcitonin and atrial natriuretic peptide, 
as well as monomeric amyloid-β, which has been demonstrated by 
both in vitro and in vivo models [91, 98-101]. Notably, IDE expres-
sion levels and activity have been found to exhibit an inverse cor-
relation with amyloid-β burdens in the brain [102, 103]. This find-
ing is significant because hypofunction of IDE has been associated 
with defective neuronal and microglial regulation of amyloid-β, 
as well as deficits in memory in AD [104] and CAA [105] patients. 
Furthermore, genetic deletions of IDE in mouse brains have 
led to a significant increase in amyloidogenic amyloid-β [102]. 
Conversely, transgenic overexpression of IDE has been shown to 
significantly reduce levels of amyloid-β and amyloid plaque for-
mation by over >50% in the brain [96, 106]. 

Several recent studies have extensively documented the signifi-
cant role of insulin in amyloid-β clearance in the brain [42, 107, 
108]. For instance, a recent study has focused on the catalytic role 
of IDE mutants (specifically, cysteine-free mutant cf-E111Q-IDE) 
in amyloid-β proteolysis/degradation, revealing that this mutant is 
exceptionally effective at breaking down amyloid-β peptides [106]. 
Additionally, Fu et al. found that microglia secrete IDE to partially 
degrade amyloid-β, which is inhibited by using a highly selective 
IDE inhibitor in vitro and in vivo [109, 110]. Moreover, Yamamoto 
et al. suggested that increased levels of IDE in the extracellular 
spaces of astrocytes aid in the degradation of soluble oligomeric 
and monomeric amyloid-β in the brain [111]. Taken together, 
these findings provide strong evidence that IDE plays a crucial 
role in amyloid-β clearance, and that its dysfunction significantly 
contributes to the accumulation of amyloid-β in the brain. 

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are a family of nine highly 
homologous Zn2+-dependent endopeptidases that are capable 
of cleaving a wide range of extracellular matrix (ECM) proteins 
under health and disease conditions [112]. Almost 28 mamma-
lian MMPs have been identified, sub-grouped into soluble matrix 
MMPs and membrane type MMPs (MT-MMPs) [113, 114]. Mul-
tiple MMPs including MMP2 and MMP9 [115, 116], have been 
reported in the degradation of both monomeric and fibrillar forms 

of amyloid-β [115, 117]. Study have shown a significant increase in 
amyloid-β levels in the brains of both MMP2 and MMP9 knock-
out mice, highlighting the role of MMPs in amyloid-β catabolism 
[118, 119]. Previous studies have also discussed some special prop-
erties of MMPs and their impact on amyloid-β clearance [117]. 
Firstly, MMPs typically exist in an inactive form known as latent 
pro-enzymes, which can be activated through proteolytic process-
ing [120]. Interestingly, a protease called extracellular matrix me-
talloproteinase inducer (EMMPRIN; CD147) has been identified 
as one of the enzymes responsible for activating MMPs through 
this mechanism. In cultured cells, EMMPRIN induction has been 
shown to decrease amyloid-β levels by activating multiple MMPs 
[121]. Secondly, the basal expression of MMPs is generally low, but 
it can be enhanced in response to pathological insults, including 
amyloid-β itself [122]. Supporting this observation, in transgenic 
mice expressing the amyloid precursor protein (APP), MMPs 
were found to be up-regulated in astrocytes located near amyloid 
deposits [119]. Furthermore, when a broad-spectrum MMP in-
hibitor called GM6001 was infused into the mice's brain ventricles 
(i.c.v.), it led to significant increases (approximately 50%) in both 
the steady-state levels and the half-life of interstitial fluid (ISF) 
amyloid-β [119]. 

Recent studies have shown a strong association between MMPs 
and AD [123] or CAA [124]. For example, Taniguchi et al. found 
that MMP7 is capable of degrading amyloid-β, inhibiting its ag-
gregation and reversing amyloid-β pathology [125]. Additionally, 
a recent in vitro  study has demonstrated that inhibiting MMP9 
secretion from astroglia reduces the proteolytic clearance/degra-
dation of amyloid-β [126]. 

In summary, the accumulating body of recent research provides 
compelling evidence supporting the critical involvement of MMPs 
in the degradation and clearance of amyloid-β. The activation and 
up-regulation of MMPs play key roles in amyloid-β metabolism. 
Notably, inhibiting MMPs leads to elevated amyloid-β levels, 
underscoring their significance in amyloid-β degradation. Con-
sequently, targeting MMPs emerges as a promising therapeutic 
strategy for diseases characterized by amyloid-β accumulation, 
particularly AD and CAA.

Serine proteases

Serine proteinases represent the largest and most abundant class 
of mammalian proteinases, named as such because their active 
sites contain a serine residue essential for catalysis. These enzymes 
play significant roles in extracellular proteolysis, with optimal ac-
tivity observed under neutral pH conditions [127]. 

Notable examples of this proteinase class include myelin basic 
protein (MBP), plasmin, and acylpeptide hydrolase, which will be 
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further discussed below [40]. 

Myelin basic proteins 
Myelin basic proteins (MBP), comprising roughly 30% of all my-

elin protein, are crucial structural components of axonal myelin 
sheaths. MBP is recognized as a “membrane adhesion molecule”, 
tightly sealing the cytoplasmic components of the cell membrane 
bilayer in the densely packed myelin sheath [128, 129]. Addition-
ally, similar to other naturally occurring “amyloid-β chaperone 
molecules (such as ApoE, apolipoprotein J, apolipoprotein A-1, 
α1-anti-chymotrypsin, haptoglobin, transthyretin and ganglio-
sides) in the CNS”, MBP also functions as a “novel chaperone”, 
capable of binding to both wild-type and Dutch/Iowa-type CAA 
mutant forms of amyloid-β, and therefore, inhibiting amyloid-β 
fibrillogenesis (with amyloid-β1-42 being more fibrillogenic than 
amyloid-β1-40) in the brain [130, 131]. Detailed ultrastructural 
analysis revealed that MBP allows the assembly of oligomeric spe-
cies but prevents their further assembly into fibrillar structures 
(protofibrils and amyloid fibrils) [130]. Furthermore, further 
analysis discovered that the N-terminal region of MBP contained 
the required amyloid-β binding domain, thereby inhibiting its 
assembly into fibrillar amyloid [132, 133]. Consistent with these 
findings, recent research indicates that purified MBP exhibits 
autocleavage activity, generating distinct peptide fragments [134]. 
Mei-Chen Liao and colleagues have reported that both purified 
human brain MBP and recombinant human MBP can effectively 
degrade amyloid-β1-40 and amyloid-β1-42 peptides. Moreover, MBP 
expressed in Cos-1 cells has demonstrated the ability to degrade 
exogenous amyloid-β1-40 and amyloid-β1-42 peptides. Additionally, 
purified MBP has been observed to degrade assembled fibrillar 
amyloid-β in vitro. Impressively, in situ experiments have shown 
that purified MBP can efficiently degrade parenchymal amyloid 
plaques and cerebral vascular amyloid in brain tissue obtained 
from amyloid-β precursor protein transgenic mice [128]. 

In conclusion, MBP serves as a unique chaperone, exerting 
inhibitory effects on amyloid-β fibrillogenesis and actively de-
grading amyloid-β peptides. Despite these compelling findings, 
our current knowledge regarding the role of MBP in amyloid-β 
clearance in the brain remains limited. Hence, we strongly en-
courage future research efforts aimed at unraveling the precise 
mechanisms underlying MBP-mediated amyloid-β clearance and 
developing strategies to enhance this process. Such investigations 
hold the potential to provide a valuable method for preventing the 
accumulation of amyloid-β in the brain, a phenomenon reported 
in conditions like AD and CAA. Through continued exploration 
in this area, we may unlock new insights into potential therapeutic 
targets and contribute to advancing the understanding and man-

agement of amyloid-β pathology.

Plasmin
Three functionally related serine proteases, including plasmin, 

urokinase-type plasminogen activator and tissue-type plasmino-
gen activators, have been implicated in amyloid-β degradation 
[135]. Plasmin is the only one of these proteases that has been 
shown to directly degrade amyloid-β. Plasmin cleaves and de-
grades amyloid-β at multiple sites, preventing its aggregation into 
β-pleated sheets [135-137], which is critical for amyloid-β toxicity 
[138]. Notably, plasmin can degrade both aggregated and non-
aggregated amyloid-β [139]. Several studies have highlighted 
the role of the plasmin in mediating amyloid-β degradation and 
preventing/blocking its neurotoxicity [135, 139, 140]. For example, 
purified plasmin has been shown to significantly decrease neu-
rotoxicity induced by aggregated amyloid-β in neuronal cultured 
cells [136, 138]. Activation of plasmin has also consistently been 
shown to degrade amyloid-β, and the level of plasmin is reduced in 
aged brains [141]. Additionally, a significant correlation has been 
demonstrated between the proteolytic activity of plasmin and 
amyloid-β levels, suggesting that enhancing amyloid-β degrada-
tion/clearance by an increasing plasmin’s proteolytic activity may 
be a viable therapeutic approach for lowering amyloid-β levels in 
the brain [135, 142]. 

Acylpeptidehydrolase 
Acylpeptidehydrolase (APH) is a homomeric tetramer, which 

is a peptidase of approximately 75~80 kDa and belongs to the 
“prolyl oligopeptidase family”. It is expressed in numerous cells and 
organs, including the brain, liver, kidney, erythrocytes, and plasma 
[143, 144]. APH is thought to play a vital role in the catabolism of 
acetylated proteins and the subsequent removal of acetyl group 
[145]. Previous studies have suggested that APH is involved in 
the degradation of amyloid-β in SKNMC-neuroblastoma cells, 
indicating its importance in this process [143, 144]. In vitro studies 
also demonstrated that APH preferentially degrades monomeric 
and oligomeric forms of amyloid-β [144]. Interestingly, APH levels 
have been found to be significantly lower in aged brains compared 
to controls.

As far as we are aware, there is currently limited available data 
on the role of acylpeptidehydrolase in amyloid-β clearance within 
the brain. Consequently, we strongly advocate for future research 
efforts aimed at unraveling the precise mechanisms by which 
acylpeptidehydrolase mediates amyloid-β clearance. Such investi-
gations hold the potential to pave the way for the development of 
strategies to enhance this clearance mechanism. By gaining a deep-
er understanding of acylpeptidehydrolase-mediated amyloid-β 
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clearance, we may discover valuable insights that could lead to the 
identification of novel therapeutic targets. This, in turn, may offer 
a promising avenue to prevent the accumulation of amyloid-β in 
the brain, a phenomenon frequently associated with conditions 
like AD and CAA. Through continued research in this area, we 
may eventually find innovative approaches to combat amyloid-β 
pathology and potentially ameliorate the progression of neurode-
generative diseases.

Cysteine proteases

Cathepsin B is a well-known member of cysteine proteases 
family and can function as either an exopeptidase or an endo-
peptidase. It is present in lysosomes of all cell types, participating 
in the degradation of proteins. Studies by Sun et al. [146] demon-
strated that cathepsin B is involved in amyloid-β degradation in 
mice brain. Lysosomal cathepsin B is critical for the clearance of 
oligomeric amyloid-β peptide in microglia [147] and its upregula-
tion enhances amyloid-β degradation in monocytes [148]. Using 
molecular modeling, Dhanavade et al. [149] found that cathepsin 
B is capable of cleaving amyloid-β peptide from the carboxylic end 
of Glu11. Cathepsin D, another aspartyl protease, is present in the 
majority of mammalian cells and functions to degrade internal-
ized and endocytosed proteins, including amyloid-β peptide [150]. 
Monocytes from AD patients have been observed to show down-
regulation of cathepsin D [151, 152]. Recently, Suire et al. found 
that genetic deletion of cathepsin D in mice leads to a significant 
accumulation of amyloid-β in lysosomes, indicating that extracel-
lular amyloid-β is trafficked to lysosomes and its degradation is 
dependent on lysosomal AβDPs, such as cathepsin B and D [153-
155].

Other miscellaneous enzymes 

Glutamate carboxypeptidase II (GCPII) plays a crucial role in the 
degradation of several amyloid-β species (monomers, oligomers, 
and fibrils) in the brain. In vitro  studies have shown that GCPII 
cleaves both amyloid-β1-40 and amyloid-β1-42 monomers. Moreover, 
GCPII not only inhibits the formation/synthesis of amyloid-β 
oligomers but also cleaves existing amyloid-β oligomers. GCPII is 
also known to degrade fibrils in vitro and reduce the plaque size 
in brain sections of transgenic mice [156]. Additionally, a mito-
chondrial amyloid-β-degrading protease called “peptidasome” has 
been identified and characterized in brain mitochondria, which 
has been reported to completely degrade amyloid-β [157-159]. 
Aminopeptidase, a family of enzymes that removes amino acid 
residues at the N-termini of proteins, has also been shown to con-
tribute to N-terminal truncation of amyloid-β [160]. It efficiently 
degrades amyloid-β peptides (monomers, oligomers, and fibrils) 

to prevent amyloid-β deposition in mammalian brains [161, 162]. 

The role of non-enzymes in clearing amyloid-ββ in the brain

Amyloid-ββ clearance by glial cells

The term “glia” was first coined by Virchow, referring to their abil-
ity to form “glue” in brain cells. Different types of glial cells have 
been recognized for their role in amyloid-β clearance, including 
astrocyte, microglia and oligodendrocyte [163]. In the human 
brain, glial cells make up about 50% of all cells [164]. Glial cells 
such as microglia and astrocytes can uptake amyloid-β and repre-
sent an additional functional pathway for amyloid-β degradation 
in the brain [165, 166]. 

On the other hand, strong evidence derived from fundamental 
molecular biology studies has also revealed that aberrant activa-
tion of glial cells can play a role in mediating neuroinflammation. 
This activation leads to the release of inflammatory mediators, 
such as inflammatory cytokines, complement components, che-
mokines, and free radicals. These factors collectively contribute to 
the production and buildup of amyloid-β, ultimately leading to the 
development of neurodegenerative conditions [167, 168]. 

The clearance of amyloid-β peptides by glial cells involves differ-
ent mechanisms as described below. 

Amyloid-β clearance by microglia
Microglia, a type of glial cells that make up 10~20% of glia cells 

in the brain and the spinal cord [169]. They serve as resident mac-
rophages, equipped with numerous pattern recognition receptors 
that enable them to detect exogenous pathogen-associated mo-
lecular patterns (PAMPs) or endogenous danger-associated mo-
lecular patterns [109]. Microglia play vital roles in internalization 
and clearance of amyloid-β in the brain (Fig. 2). They interact with 
both soluble and fibrillar forms of amyloid-β in different ways. 
Soluble forms are taken up through macropinocytosis and LDLR 
(low density lipoprotein receptor)-related proteins mediated path-
way, while fibrillar forms of amyloid-β interact with innate im-
mune receptors of microglia, initiating intracellular signaling cas-
cades and stimulating phagocytosis [170]. A wide range of innate 
immune receptors are involved in microglia-mediated amyloid-β 
clearance, including scavenger receptors, Toll-like receptors, pu-
rinergic G protein-coupled receptors, complement components 
and their associated receptors, and triggering receptor expressed 
on myeloid cells [46, 109]. The surface signaling receptor TREM2, 
found in microglia, can enhance the microglial phagocytosis of 
amyloid-β when increased expression is triggered by the pres-
ence of amyloid-β. However, the R47H mutation present in AD 
can impede TREM2’s ability to recognize lipid ligands effectively, 
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resulting in failure to activate microglia and ultimately leading to 
amyloid-β deposition [171-173]. In addition, ATP-binding cas-
sette transporter A7, mainly expressed in human microglial cells, 
regulates microglial phagocytic function to reduce amyloid-β de-
position in the brain [171, 174]. In contrast to receptor-mediated 
amyloid-β phagocytosis, both receptor-mediated endocytosis (a 
biochemical and a mechanical process) and receptor-independent 
fluid-phase pinocytosis is also involved in the uptake and degrada-
tion of amyloid-β by microglia [109, 175-177]. Once internalized 
within cells, microglia rapidly traffic amyloid-β into intracellular 
degradation systems including autophagy, endosomal/lysosomal 
degradation, and ubiquitin–proteasome system, which prevent 
intracellular amyloid-β aggregation and accumulation, thus pro-
tecting against amyloid-β-associated neuropathology [46]. Addi-
tionally, microglia contribute to amyloid-β clearance by secreting 
AβDPs that degrade amyloid-β in the extracellular space, reducing 
its buildup in the brain [178, 179].

Amyloid-β clearance by astrocytes 
In addition to microglia, stellate-shaped astrocytes also play a 

significant role in the metabolic functions of amyloid-β clearance 
[163, 180] (Fig. 2). Astrogliosis and astrocyte activation, similar to 
microgliosis, are closely related to amyloid-β pathogenesis [179, 
181]. Notably, research has revealed that astrocytes are more profi-
cient than microglia in removing amyloid-β, especially during the 
initial stages of AD [182, 183]. Mechanistically, both in vivo and 
in vitro  studies have shown that astrocytes can release proteases, 
such as NEP, ACE, ECE-2 and MMP9, which aid in amyloid-β 
clearance in the brain [184, 185]. Additionally, astrocytes secrete 
kallikrein-related peptidase 7 (KLK7) and MMP membrane type-
1 (MT1) [116, 186]. KLK7 protein can cleave amyloid-β within the 
central hydrophobic core, attenuating fibril formation and pro-
moting the degradation of pre-formed fibrils [187]. The deletion 
of KLK7 in mouse brains resulted in an increased brain amyloid-β 
economy, supporting the notion that “KLK7-dependent amyloid-β 
degradation” activity is physiologically relevant in the catabolism 
of amyloid-β in brain [186]. Similarly, MT1 expressed in “reactive 
astrocytes” near amyloid deposits degrades exogenous amyloid-β 
and fibrillar amyloid-β in vitro [116].

Additionally, the endocytic and signaling receptor LRP1, along 
with its ligand ApoE, is widely recognized for its crucial involve-
ment in the regulation of amyloid-β catabolism and APP pro-
cessing [188, 189]. Chia-Chen Liu’s study provides compelling 
evidence for the significant involvement of astrocytic LRP1 in 
amyloid-β metabolism, as demonstrated in both in vitro and in 
vivo models. Deficiency of astrocytic LRP1 leads to impaired 
clearance of amyloid-β in the interstitial fluid (ISF) and worsened 

amyloid-β deposition in the brains of APP/PS1 mice [190]. 
Astrocytes, among the various cell types in the brain, are also the 

primary contributors to the production of ApoE, generating the 
highest amounts of this protein [191]. Specifically, ApoE recycling 
plays a crucial role in regulating the expression of various cell 
surface proteins, particularly ABCA1 [192, 193]. The impaired 
recycling of ApoE4 results in the entrapment of ABCA1 within 
endosomes, preventing its localization to the cell surface [194]. 
This disruption in ABCA1 function is associated with decreased 
ABCA1-mediated cholesterol efflux activity and compromised 
amyloid-β degradation capacity. Remarkably, the enhancement of 
ABCA1 activity effectively restores amyloid-β degradation in cells 
treated with ApoE4 and concurrently reduces the aggregation of 
both ApoE and ABCA1 in mice's brains [192, 194]. Furthermore, it 
is essential to recognize the critical role of the autophagy pathway 
in cellular homeostasis, facilitating the turnover of cell organelles 
and promoting the degradation of aggregated proteins in re-
sponse to cellular stress [195]. A defective clearance of amyloid-
β-generating autophagic vacuoles can create conditions favorable 
for amyloid-β accumulation in the brain, as evidenced by data 
indicating that increasing autophagy through rapamycin reduces 
amyloid burden in vivo [196]. Additionally, autophagy appears to 
play a role in the breakdown of amyloid-β by microglia [197], and 
astrocytes from transgenic AD models have shown strong expres-
sion of microtubule-associated protein light chain 3, suggesting 
the involvement of autophagy in amyloid-β internalization by 
these cells, providing a link between autophagy and phagocytosis 
[175, 198]. 

Consistent with these findings, the process of amyloid-β aggre-
gation and fibrillogenesis initiates a deleterious cascade of events 
in astrocytes, impacting neuronal viability and functionality [199]. 
For instance, in an AD mouse model, reactive astrocytes exhibit 
metabolic and functional changes, resulting in the abnormal pro-
duction of the neurotransmitter γ-aminobutyric acid (GABA) 
through the activity of monoamine oxidase B (MAO-B) in the 
putrescine-degradation pathway [200, 201], thereby contributing 
to memory impairment [200, 202]. Moreover, MAO-B generates 
toxic byproducts such as ammonia and H2O2 along this pathway, 
ultimately leading to neurodegeneration [201, 203]. 

Amyloid-ββ clearance via the blood-brain barrier

Amyloid-β can cross the blood–brain barrier (BBB) in both di-
rections: from brain to blood (efflux) and from blood to brain (in-
flux) (Fig. 2). The BBB is responsible for catabolizing the majority 
of amyloid-β (~75%) compared to interstitial fluid (ISF) bulk flow 
does (~10%, as explained below) [6]. Furthermore, the BBB has the 
ability to uptake and catabolize not only amyloid-β in the blood 
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but also amyloid-β that originates from the brain [204]. 

Receptor‑mediated efflux of amyloid-β
Amyloid-β can travel from the brain to blood by (i) ATP-binding 

cassette transporters (ABC transporters) and (ii) LDLR family 
members, such as LRP1 [6]. 

The ABC transporter is one of the most common transmem-
brane proteins, which can be classified into subfamilies (A to G) 
based on sequence homology and functional similarity. These 
ABC transporters use energy generated through ATP hydrolysis 
to transport substrates across cell membranes and play an essential 
role in various physiological activities. Recent studies have sug-
gested that ABC transporters are involved in amyloid-β clearance 
[152]. Among them, two ABC transporters, ABC transporter sub-
family B member 1 (ABCB1, an efflux pump for xenobiotic mol-
ecules) and ABC transporter subfamily A member 1 (ABCA1 or 
Cholesterol Efflux Regulatory Protein (CERP), an efflux pump for 
cholesterol/phospholipids from cell membranes), have received 
considerable attention for their roles in amyloid-β clearance [205]. 
ABCB1 is directly involved in the export of amyloid-β into the 
bloodstream, while ABCA1 is indirectly facilitates amyloid-β ef-
flux transfer from the brain to blood via ApoE-dependent mecha-
nisms [206]. It has been suggested that ABCA1 controls protein 
levels of ApoE and its lipidation state. A highly lipidated ApoE 
binds to amyloid-β (ApoE-amyloid-β interaction) more efficiently, 
diminishing its capacity to aggregate and making amyloid-β more 
accessible for transport at the neurovascular unit [205]. 

The LDLR family is a highly conserved family of receptors that 
bind to a wide range of ligands, including amyloid-β [207]. LRP1 
is localized to neurons, glial cells, endothelial cells in the BBB, and 
epithelial cells in the blood-CSF barrier (BCSFB). Studies have 
shown that LRP1 binds to both amyloid-β1-40 and amyloid-β1-42, 
either alone or in conjugated form with carrier proteins. Once 
bound, LRP1 can target amyloid-β for cellular degradation or fa-
cilitate its transcytosis [208], helping to transport amyloid-β out of 
the brain [209]. Furthermore, α2-macroglobulin [210] and LDLR-
related protein 2 (LRP2), also known as megalin, in combination 
with clusterin (ApoJ) can form a complex to regulate amyloid-β 
clearance across the BBB [6]. 

Receptor‑mediated influx of amyloid-β 
RAGE, the receptor for advanced glycation end products, is be-

lieved to be involved in the influx of amyloid-β into the CNS [211] 
(Fig. 2). Fang et al. reported that the RAGE-dependent signaling 
pathway regulates the cleavage of APP by β- and γ-secretases to 
generate amyloid-β, at least in part, through the activation of two 
specific enzymes, GSK3β and p38 MAP kinase [212]. RAGE is 

a multi-ligand receptor that interacts with a variety of ligands, 
including 125I labeled amyloid-β (monomers, oligomers, and 
fibrils) [213]. Using an in vitro  BBB model, Mackic et al. [214] 
demonstrated that RAGE interacts with amyloid-β followed by its 
subsequent cellular processing (endocytosis and transcytosis) in 
the circulation. In addition, recent studies reported that inhibition 
of RAGE or its interaction with amyloid-β suppresses amyloid-β 
accumulation in brain parenchyma in mice [215-217]. Ma et al. 
[218] also showed that upregulation of RAGE in the hippocam-
pus or prefrontal lobe significantly contributed to the amyloid-β 
accumulation in animal brains [152]. However, more recently, 
numerous amyloid-β sequestering agents in the periphery (anti-
amyloid-β IgG, serum amyloid P component, and soluble forms of 
both RAGE (sRAGE) and LRP1 (sLRP1)) are reported to inhibit 
its interaction with RAGE and therefore inhibit amyloid-β from 
entering the brain [6, 210, 219, 220]. 

Amyloid-ββ clearance via the interstitial fluid bulk flow

The brain and spinal cord contain two extracellular fluids, ce-
rebrospinal fluid (CSF) and interstitial fluid (ISF) [70]. Previous 
studies have shown that CSF enters the interstitial space in the 
brain and exchanges or mixes with ISF. This suggests that proteins 
in ISF may also be transferred or cleared directly into the CSF via 
ISF bulk flow [221]. In fact, ISF bulk flow can remove proteins, 
such as amyloid-β from the interstitium via two possible pathways: 
(i) into the perivascular space or (ii) into the glymphatic system, as 
discussed below [70, 222].

Perivascular drainage 
Previous animal studies have shown that perivascular routes are 

crucial for the clearance of amyloid-β from the brain (Fig. 2). A 
failure of this drainage pathway can cause amyloid-β to become 
trapped in the cerebral cortex and the walls of blood vessels [223], 
leading to the development of AD [70, 224] and CAA [70]. The 
lymphatic system serves as a secondary circulation system and 
closely resembles the blood-vascular system [222]. ISF bulk flow 
provides an effective clearance route for ISF-containing amyloid-β 
in the brain and cerebral vessels [70, 225], mostly consisting of 
perivascular drainage and glymphatic clearance. In perivascular 
drainage pathway, amyloid-β is eliminated from extracellular 
spaces by first entering into the capillary spaces before it drains 
along the walls of arteries in human brain [223]. Notably, if the 
direct entry of amyloid-β into the blood is either prevented or fails, 
this perivascular drainage becomes apparent [70] or when the 
level of NEP enzyme is reduced [52]. However, this route has been 
shown to be six times slower than amyloid-β absorption into the 
blood across the BBB [70, 226]. Several factors can influence the 
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perivascular drainage of amyloid-β, including ApoE*ε4, arterial 
age, deposition of immune complexes, and arterial pulsation.

Glymphatic system 
Recently, a novel pathway known as the “glymphatic pathway” 

has been discovered to contribute to the clearance waste, such as 
interstitial solutes, metabolites, amyloid-β, from the brain [6, 227]. 
The glymphatic system is a glial-dependent perivascular network 
that functions similar to a pseudo-lymphatic system in the brain 
[228]. The term “glymphatic” was coined based on two-photon im-
aging research [6, 222, 229], which emphasized the reliance on glial 
cells and functional similarity with the peripheral lymphatic sys-
tem that helps to clear waste materials from the interstitial spaces 
between cells [222, 227]. According to this theory, CSF enters the 
paravascular spaces surrounding the brain’s penetrating arteries, 
combines with ISF and interstitial solutes in the parenchyma, and 
then leaves along the paravascular spaces of the brain’s draining 
veins. The glymphatic system contributes significantly to clearing 
amyloid-β from the brain, in addition to other wastes, more than 
was previously believed [227]. Supporting the idea, an increasing 
body of research has suggested a link between glymphatic dys-
function and decreased amyloid-β clearance in the brain [6, 227]. 
This relationship is influenced by several factors, including mo-
lecular size, arterial pulsation, aquaporin-4 (AQP4) expression and 
localization, and sleep [6]. 

The role of csf in clearing amyloid-ββ in the brain 

The brain needs to eliminate proteins after their transport 
from the ISF into the CSF [6]. In particular, CSF, which is rich 
in amyloid-β, can be absorbed into the blood/circulation either 
through arachnoid villi [230] and the blood-CSF barrier (BCSFB), 
in the presence of amyloid-β transporters [209], or through the 
perivascular drainage pathways/perineural spaces and possibly 
meningeal lymphatics vessels, which empty into the lymphatic 
system [70, 222, 231]. However, the efficacy of either system to 
clear amyloid-β largely depends on several factors, including CSF 
production, BCSFB integrity and transporters, arachnoid villi re-
sistance, and lymphatic absorption of the CSF [6].

TRANSPORT MECHANISMS OF AMYLOID-ββ BETWEEN THE 
BRAIN AND THE PERIPHERY

Brain-derived amyloid-β can be transported into the periphery 
for clearance through various routes, such as BBB [232, 233], BC-
SFB [214].

Similarly, the brain has evolved a distinct paravascular pathway 
that enables fluid exchange between the brain’s interstitial fluid 

(ISF) and cerebrospinal fluid (CSF) without traversing the tightly 
regulated endothelial cell layer [222]. Numerous studies have 
demonstrated that a significant portion of cerebral amyloid-β is 
cleared through the transvascular route [234]. Additionally, emerg-
ing evidence suggests that the glymphatic system, which plays a 
crucial role in cerebral waste clearance, may also be vital for clear-
ing amyloid-β [222]. Following the glymphatic system, the major-
ity of CSF is believed to drain into the venous circulation through 
arachnoid granulations [235, 236]. 

On the other hand, how does amyloid-β originating in the pe-
riphery gain access to the brain’s regions? Several compelling lines 
of evidence support the notion that amyloid-β generated in the 
periphery can be transported into the brain, contributing to the 
development of amyloid pathology. For instance, a study demon-
strated that the administration of peripherally applied amyloid-
β-containing inoculates resulted in the deposition of cerebral 
amyloid-β, indicating that amyloid-β generated in the periphery 
can infiltrate the brain and contribute to amyloid pathology 
[237, 238]. Furthermore, the receptor for advanced glycation end 
products (RAGE) has been proposed as a primary transporter of 
amyloid-β from the systemic circulation into the brain through 
the blood-brain barrier (BBB). The upregulation of RAGE expres-
sion in both human and animal studies provides further support 
for this mechanism [215, 239]. Additionally, recent research find-
ings suggest that platelets play a role in transporting amyloid-β 
from the systemic circulation into the brain [240]. These findings 
align with several recent reports demonstrating the contribution 
of circulating amyloid-β to cerebral amyloidosis. Collectively, these 
studies corroborate the notion that amyloid-β generated outside 
the brain can be transported from the periphery into the brain, 
leading to the development of central amyloid pathology [241-
243]. 

This close relationship between the brain and the periphery con-
cerning amyloid-β metabolism provides additional insight into 
the pathophysiology of diseases and may lead to new approaches 
for diagnosis and treatment of AD and CAA. 

AMYLOID-ββ CLEARANCE IN THE PERIPHERY

Although the mechanisms of amyloid-β degradation/clearance 
in the periphery are not fully understood, available studies sug-
gest that approximately 60% of brain-derived amyloid-β is cleared 
through transportation across the BBB to the periphery [244, 
245]. In addition, a recent study demonstrated that brain-derived 
amyloid-β can be cleared in the periphery through a single periph-
eral system, resulting in an approximately 80% decrease in brain 
amyloid-β accumulation during parabiosis in humans and mice 
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[232]. This finding highlights the significant role of the periphery 
clearance system in clearing brain-derived amyloid-β and suggests 
that effective peripheral amyloid-β clearance could have a major 
impact on preventing amyloid-β accumulation in the brain. Mul-
tiple processes are likely involved in amyloid-β catabolism in the 
periphery, as explained below.

The role of peripheral enzymes in amyloid-ββ clearance

Several studies have reported that the expression and function of 
AβDPs in the brain to lower amyloid-β levels [246, 247]. Similarly, 
the expression and catabolic activity of these enzymes in the pe-
riphery have shown promising results [248]. Enzymes such as NEP, 
ECE, IDE and ACE have been found in the periphery and explored 
for their ability to degrade amyloid-β [249, 250]. These AβDPs 
have been found to bind to erythrocytes and degrade amyloid-β in 
plasma [248], human serum [251], skeletal muscle [232, 252, 253], 
and within the liver [254]. Furthermore, ECE–1 has been reported 
to degrade amyloid-β in the blood. The presence of ACE in blood 
and IDE in human CSF has been identified but their functional 
role in the amyloid-β metabolism remains unknown and requires 
future investigation [251].

The role of blood components in amyloid-ββ clearance 

Amyloid-β from the brain can enter the bloodstream through 
various mechanisms [255-257]. Once is the blood, multiple 
components work together to clear circulating amyloid-β [103], 
including a wide range of amyloid-β-binding proteins such as li-
poproteins and albumin, as well as amyloid-β-binding cells such as 
erythrocytes and immune cells [258]. 

Amyloid-ββ-binding proteins 

An amyloid-β-equilibrium between blood and brain is main-
tained through a range of amyloid-β carrier proteins and receptors 
that facilitate transport and clearance of amyloid-β across the BBB 
[239, 248]. 

Human serum albumin, a most abundant protein in the blood, 
has been found to bind to amyloid-β (90% of amyloid-β1-40 and 
amyloid-β1-42) [259, 260], including both amyloid-β monomers 
[261] and oligomers [262] (Fig. 2). Numerous studies have shown 
that human serum albumin targets both species [259] and inhibits 
amyloid-β fibrillization both in vitro [263] and in vivo [259, 264], 
supporting the peripheral sink hypothesis. This strategy is based 
on the idea that amyloid-β in the brain and peripheral are in equi-
librium and that reducing amyloid-β in the periphery can lead to 
a reduction of amyloid-β in the brain through passive diffusion 
down a concentration gradient [265, 266]. 

Amyloid-ββ-binding cells-erythrocytes

Amyloid-β-binding cells, such as erythrocytes, have been 
found to play a significant role in the transport and clearance of 
amyloid-β in peripheral organs [258] (Fig. 2). For example, eryth-
rocytes facilitate the clearance of amyloid-β by relying on comple-
ment C3b-dependent adherence to complement receptor 1 on 
erythrocytes [171, 267]. Any alterations in the number and func-
tion of erythrocytes, or the decreased adherence to erythrocytes, 
may prevent amyloid-β from being transported and cleared in 
peripheral organs, eventually leading to amyloid-β accumulation 
in the brain. Recent studies also have found a significant associa-
tion between amyloid-β and erythrocytes [268, 269]. For instance, 
Taylor et al. showed a new strategy in which immune complexes 
simultaneously capture amyloid-β and adhere it to erythrocytes 
via complement receptor 1 (CR1; CD35), promoting the rapid 
clearance of amyloid-β from the circulation and the brain [270]. 

Immune cells

Monocytes, lymphocytes, neutrophils, and macrophages are 
additional cell types that have been implicated in the clearance 
of amyloid-β peptides [258, 267, 271-273]. Just like glial cells and 
neurons in the brain clear amyloid-β by phagocytosis or endocy-
tosis, amyloid-β in the periphery can also be phagocytosed in the 
blood by monocytes and neutrophils, as well as in tissues by mac-
rophages [239, 274]. Monocytes in the blood are considered pe-
ripheral counterparts of microglia, and it has been shown that they 
are more effective at clearing amyloid-β clearance than microglia 
[257]. A recent study indicated that the receptors related with 
amyloid-β internalization (CD33, TLR2, TREM2, etc.) on blood 
monocytes are reduced in AD patients, implying that the capacity 
of monocytes to uptake and degrade amyloid-β is compromised, 
which contributes to an increase in amyloid-β level [50, 257]. 

Additionally, lymphocytes (including T cells, B cells, and natu-
ral killer cells) have been linked to amyloid-β clearance through 
immunoglobulin-mediated adaptive phagocytosis [239, 273, 275]. 
Multiple studies also have demonstrated that various types of cells 
derived from the peripheral system, including monocyte-derived 
microglia-like cells [276, 277], peripheral blood-derived microglia-
like cells [278], CD11b-positive cells (predominantly monocytes) 
[279] and CD115-positive cells, can migrate from the bloodstream 
[280] into the brain to phagocytose amyloid-β peptides, poten-
tially aiding in the prevention of amyloid-β accumulation [281].

BBB is a critical regulator of the entry of peripheral immune cells 
into the brain and their clearance of amyloid-β. Although the vol-
ume of blood is much larger than that of cerebrospinal fluid (CSF), 
the BBB limits the access of peripheral immune cells to the brain, 
which can affect their ability to clear amyloid-β. However, recent 
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research has highlighted the significant role of peripheral immune 
cells, particularly monocytes and macrophages, in amyloid-β 
clearance, particularly in the early stages of AD. Therefore, it is 
likely that peripheral clearance mechanisms play a crucial role in 
clearing soluble forms of amyloid-β that can traverse the BBB.

The role of peripheral organs in amyloid-ββ clearance

In the periphery, several tissues and organs are involved in 
amyloid-β peptide clearance, including the liver, kidney, and spleen 
etc. as discuss below [204, 232, 282, 283].

The role of the liver in clearing amyloid-ββ 

The liver is a crucial metabolic organ that is responsible for 
synthesizing proteins, regulating metabolism, and detoxifying the 
body from harmful substances. Circulating amyloid-β is mainly 
cleared by either degradation in hepatocytes, which accounts for 
more than 60% of clearance, or excretion/catabolism in the bile 
(Fig. 2). A recent study indicated that people with liver cirrhosis 
have reduced liver-mediated amyloid-β clearance [284], and an-
other study showed a significant association between hepatic func-
tion and plasma amyloid-β levels [285]. Although the molecular 
mechanisms governing hepatic amyloid-β uptake are not yet fully 
understood [286], multiple studies have revealed that transport 
proteins such as albumin, ApoJ, ApoE, transthyretin, and alpha-
2-macroglobulin, which facilitate the degradation of amyloid-β in 
peripheral organs, particularly the liver, bind to amyloid-β after it is 
effluxed from the brain [103, 260, 287, 288]. To better comprehend 
the receptor-mediated amyloid-β uptake in the liver, it has been 
proposed that LRP1 is the major receptor involved in amyloid-β 
internalization [286, 289], followed by its degradation by several 
proteases found in the liver [254]. Although various receptors, 
such as SR-A and RAGE, are expressed in the liver [286], LRP1 has 
been identified as the primary receptor responsible for amyloid-β 
uptake in the liver [254]. Modulating LRP1 function in the liver, 
either pharmacologically or non-pharmacologically, has been 
shown to the reduce amyloid-β buildup in the mouse brain [254, 
290]. Similarly, insulin has been hypothesized to enhance liver-
mediated amyloid-β clearance by inducing intracellular transloca-
tion of LRP1 to the plasma membrane in hepatocytes [285, 291]. 

The role of kidney in clearing amyloid-ββ
The kidneys are the body’s primary excretory organs, respon-

sible for regulating blood minerals to control metabolite levels 
[103]. Previous research has shown that protein uptake in the 
renal tubule is mediated primarily by two receptors, megalin and 
cubilin, expressed in renal tubular epithelial cells [292]. Megalin, 
also known as LRP2, has been suggested to transport amyloid-β 

from the brain to blood across the BBB [293]. Recent studies have 
found that megalin-positive renal tubular epithelial cells in both 
humans and AD mice accumulate amyloid-β, suggesting that 
megalin may absorb amyloid-β from the urine [282]. Amyloid-β 
has also been detected in human urine samples [294], and ani-
mal experiments have shown that the kidney filtration removes 
amyloid-β from the blood into the urine [232, 295]. Renal failure 
can result in poor peripheral clearance of amyloid-β, as evidenced 
by an inverse relationship between serum amyloid-β levels and 
estimated glomerular filtration rate (eGFR) of renal function in 
chronic kidney disease patients [296, 297]. Human kidney donors 
have also shown reduced eGFR and the increased plasma levels of 
amyloid-β [298], demonstrating that the decreased renal function 
reduces amyloid-β clearance in the periphery. While the effect of 
renal dysfunction on amyloid-β burden in the brain is unknown, 
renal dysfunction has been associated with an increased risk of 
dementia [299]. Kidney transplantation can reduce amyloid-β 
deposition in the plasma [298], and hemodialysis may ameliorate 
amyloid-β deposition in the brains of CKD patients [300, 301]. 

Recent studies have provided further evidence for a strong as-
sociation between kidney function and amyloid-β clearance [302]. 
For instance, Gronewold et al. have reported that reduced kidney 
function is linked to increased plasma amyloid-β level, which 
could contribute to cerebral amyloid-β accumulation [303]. Ad-
ditionally, Tian et al. have found that amyloid-β levels in the blood 
of the renal artery were higher than in the blood of the renal vein 
[282], indicating that the kidney may participate in amyloid-β 
clearance by filtering it from the blood into the urine [239]. 

The role of spleen in clearing amyloid-ββ 

The spleen is an organ that serves as a blood filter and per-
forms important immunological functions, resembling a large 
lymph node. It stores blood and removes old erythrocytes and is 
composed of various immune cells, including monocytes/mac-
rophages, which play a crucial role in the innate immune system 
[304]. Similar to other monocytes/macrophages in the body, the 
spleen is known to clear amyloid-β in the periphery [283, 305]. Re-
cent research by Yu et al. has demonstrated that the spleen signifi-
cantly contributes to the peripheral clearance of amyloid-β, with 
splenic monocytes and macrophages playing a significant role in 
this process. Conversely, splenectomy has been shown to increase 
amyloid-β accumulation and may accelerate the onset of AD [283, 
306]. 

The role of other peripheral organs in clearing amyloid-ββ 

Several studies have reported that the detection of amyloid-β de-
posits in non-neural tissues, such as skin, subcutaneous tissue, and 
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intestine in humans, and the gastrointestinal tract in animals such 
as dogs [307, 308]. The presence of circulating amyloid-β in the 
blood is thought to be the cause of these deposits, suggesting that 
these organs may participate in peripheral amyloid-β metabolism, 
as observed in many studies [309-311]. 

The skin, for example, is an immune organ [312], and it develops 
from the same ectodermal layer as the brain during embryonic 
development [312, 313]. Certain genes and molecular pathways 
linked to the mechanisms of neurodegenerative diseases modify 
their expression with progressing skin aging, possibly due to the 
shared ectodermal origin of the skin and nervous system [313]. 
BACE1 (β-secretase 1), an enzyme that degrades amyloid-β1-40 
and amyloid-β1-42, generates a shorter amyloid-β1-34 peptide [314], 
which has been identified in human skin and could serve as a pos-
sible marker of amyloid-β degradation [315]. Additionally, a study 
showed that the majority of the 125I-labeled amyloid-β1-40 was de-
tected in the skin with only a minor amount in the brain, demon-
strating that amyloid-β produced in the brain can be cleared in the 
periphery [232]. Although basal keratinocytes have been shown to 
express high levels of amyloid-β precursor protein [316, 317], it is 
still unknown whether the amyloid-β deposits are caused by local 
skin cells or the circulating blood [103]. Sweat secretion is another 
potential mechanism for excreting amyloid-β, but it is unclear 
whether the skin contributes to the amyloid-β clearance. More re-
search is needed to answer this question.

Similarly, the digestive system, which is a lymphatic organ, con-
tains a substantial number of macrophages and other immune 
cells, suggesting that the gut may be capable of clearing amyloid-β. 
Many studies imply that the brain-gut-microbiota axis is implicat-
ed in the etiology of dementia-related disorders [318]. Therefore, 
exploring the possibility of the gastrointestinal system influencing 
peripheral amyloid-β metabolism is critical.

THERAPEUTIC STRATEGIES FOR CLEARING AMYLOID-ββ IN 
THE BRAIN AND THE PERIPHERY 

At present, effective preventative or therapeutic medicines for 
AD and CAA are lacking. Over the years, various treatment ap-
proaches targeting amyloid-β in the brain, such as anti-amyloid-β 
therapy (including amyloid-β immunotherapy, secretase inhibi-
tors, and amyloid-β aggregation inhibitors), have been developed 
and remain in use [319, 320]. However, most of these strategies 
have failed in clinical trials due to high costs, drug-drug interac-
tions, food-drug interactions, and significant side effects, which 
impose a significant financial and social burden on society. To 
achieve the desired therapeutic outcomes of these complex and 
multifaceted diseases, we must consider different strategies tar-

geting amyloid-β in both the brain and periphery based on solid 
sources of information.

The accumulation of amyloid-β in the brain is largely caused by 
a reduction in AβDPs activity. Thus, increasing the expression lev-
els of AβDPs would dramatically reduce amyloid-β buildup and 
associated pathologies. Strategies to translate AβDPs into thera-
peutic applications include enhancing AβDPs activity through the 
administration of compounds, gene therapy using genes encoding 
AβDPs, and cell therapies based on stem cell transplantation [40]. 
Additionally, non-enzymatic pathways (such as targeting microg-
lial phagocytosis, photo-oxygenation [321, 322], BBB transporters, 
perivascular drainage etc.) should be improved to reduce the level 
of amyloid-β in the brain [171]. 

Besides mechanisms underlying the clearance of amyloid-β in 
the brain, peripheral intervention has also received much atten-
tion, with positive outcomes in reducing amyloid-β in the brain 
and the incidence of dementia. These peripheral approaches 
include managing cardiovascular risk factor [323], treating sleep-
disordered breathing with sustained positive airway pressure [324, 
325], lowering peripheral blood cholesterol levels by using statins 
[326, 327], plasma exchange programs [328], dialysis (peritoneal 
dialysis and hemodialysis) [329], improving the phagocytic abil-
ity/function of peripheral blood monocytes through proteolytic 
degradation [272, 305], targeting enzymes (NEP/ACE) processes 
[252, 253, 330], developing nanozymes [331], and various thera-
peutic agents targeting peripheral clearance of amyloid-β (such as 
inorganic nanoparticles, polymer nanoparticles and liposomes) 
[332-336]. In recent years, researchers have been investigating im-
munotherapy as a “gold standard strategy” to promote amyloid-β 
clearance, leading to an increased focus on development of anti-
Aβ therapies [337-339]. However, amyloid-related imaging abnor-
malities (ARIA) are the major severe side effect associated with 
amyloid-β immunotherapy [340]. Despite the clinical therapeutic 
effects of anti-amyloid-β immunotherapies for Alzheimer’s disease 
(AD), aducanumab and solanezumab have been shown to im-
prove cognitive function, while aducanumab and bapineuzumab 
may also increase the risks of ARIA [341]. 

In addition to immunotherapy, non-immune approaches, such as 
peripheral amyloid-β-binding agents (e.g., gelsolin, GM1, sRAGE, 
sLRP fragments) [215, 335], blood cells, and protein [248, 265], 
have also made significant progress in disease prevention. 

These findings suggest that both “central therapeutic strategies” in 
the brain and “systemic therapeutic strategies” may be helpful in re-
ducing the amyloid-β burden in the brain and attenuating disease 
pathology. Therefore, a combination of both central and systemic 
therapeutic approaches may be necessary to effectively treat AD 
and CAA.
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CONCLUSION

AD and CAA are often associated with each other, sharing 
the common factor of amyloid-β. The impaired clearance of 
amyloid-β peptide in the body is believed to contribute to the ac-
cumulation of central amyloid-β, leading to the pathogenesis of 
sporadic AD in the brain parenchyma and CAA in blood vessels. 
This review has highlighted the importance of clearing amyloid-β 
in the brain, which can be achieved through enzymatic or non-en-
zymatic pathways. Likewise, multiple mechanisms are involved in 
amyloid-β clearance in peripheral organs, such as immunomodu-
lation, immune cells, enzymes, amyloid-β-binding proteins, and 
amyloid-β-binding cells. Therefore, it is recommended to investi-
gate central therapeutic strategies targeting amyloid-β clearance in 
the brain and systemic therapeutic strategies targeting clearance 
mechanisms in peripheral organs to eliminate excess amyloid-β 
deposits. This approach will not only enhance our understanding 
of molecular mechanisms underlying both diseases but also pro-
vide new targets for inhibiting amyloid-β deposition in the patho-
genesis of sporadic AD and CAA. 
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