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Abstract

Background Air pollution, weather, pollen, and influenza are typical aggravating factors for asthma. Previous studies
have identified risk factors using regression-based and ensemble models. However, studies that consider complex
relationships and interactions among these factors have yet to be conducted. Although deep learning algorithms can
address this problem, further research on modeling and interpreting the results is warranted.

Methods In this study, from 2015 to 2019, information about air pollutants, weather conditions, pollen, and influenza
were utilized to predict the number of emergency room patients and outpatients with asthma using recurrent neural
network, long short-term memory (LSTM), and gated recurrent unit models. The relative importance of the environ-
mental factors in asthma exacerbation was quantified through a feature importance analysis.

Results We found that LSTM was the best algorithm for modeling patients with asthma. Our results demonstrated
that influenza, temperature, PM;, NO, CO, and pollen had a significant impact on asthma exacerbation. In addi-
tion, the week of the year and the number of holidays per week were an important factor to model the seasonality
of the number of asthma patients and the effect of holiday clinic closures, respectively.

Conclusion LSTMis an excellent algorithm for modeling complex epidemiological relationships, encompassing non-
linearity, lagged responses, and interactions. Our study findings can guide policymakers in their efforts to understand
the environmental factors of asthma exacerbation.
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Background

Asthma is one of the most prevalent respiratory diseases
that have a significant public health burden. According to
the Global Asthma Report 2022, 262 million people were
affected by asthma, and 461 thousand people died from
asthma worldwide in 2019 [1]. In addition, asthma is a
chronic disease that seriously reduces patients’ quality of
life but has no definitive cure [2].

Due to the severity of asthma, many previous studies
have attempted to understand the risk factors that exac-
erbate asthma, and various environmental factors such
as air pollution, tobacco smoke, weather, allergens such
as pollen, and pathogens such as influenza viruses have
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been identified as culprits for asthma exacerbation [3].
These studies mostly used regression-based statistical
models such as the generalized linear model (GLM) [4],
generalized additive model (GAM) [5], and distributed
lag nonlinear model (DLNM) [6] and ensemble-based
machine learning models such as the random forest
(RF) [7] and gradient boosting machine (GBM) [8]. Cas-
sino et al. analyzed tobacco use and O;-associated emer-
gency room visits for asthma in New York City based
on a Poisson regression model [9]. Lee et al. studied the
effects of air pollutants, pollen, weather conditions, and
viruses on the number of emergency room patients with
asthma in Seoul, South Korea, using DLNM [10]. Chen
et al. studied the lagged nonlinear relationship between
temperature and adult asthma hospitalizations in Beijing
using the DLNM [2]. Sun et al. studied the association
between pollen (trees, weeds, and grasses) and asthma in
North Carolina using DLNM [11]. Jeddi et al. compared
machine learning models for pediatric asthma diagno-
sis by considering environmental factors such as mites,
cold air, strong odors, and mold [12]. Although previous
studies have succeeded in identifying risk factors and
modeling the risk of asthma using conventional statisti-
cal and machine learning algorithms, our understanding
and modeling accuracy remain insufficient because of the
complexities associated with nonlinearity, lagged rela-
tionships, interactions between factors, multicollinearity,
and various confounders.

To model the relationship with higher accuracy,
researchers have started to utilize state-of-the-art deep
learning algorithms such as recurrent neural networks
(RNNs) [13], long short-term memory (LSTM) [14], and
gated recurrent units (GRUs) [15]. Woo et al. predicted
the peak expiratory flow rate in children with asthma
using real-time indoor air pollution data using RNN,
GRU, and deep neural network [16]. Kim et al. studied
the association between indoor particulate matter (PM)
and asthma attacks in children in South Korea using the
LSTM [17]. Chang and Ku used LSTM to predict the
daily number of patients with asthma affected by weather
and air pollution in Seoul, South Korea [18]. As research
based on deep learning algorithms in the field of public
health is still in its early stages, more research on mod-
eling methodologies and epidemiological results from the
models is necessary.

This study examined the association between the
number of patients with asthma and 18 environmen-
tal factors in South Korea between 2015 and 2019 using
the RNN, LSTM, and GRU algorithms. Eighteen envi-
ronmental factors were categorized into air pollution,
weather, pollen, and influenza. The accuracy of the model
developed in this study was compared with that of con-
ventional algorithms (GLM, GAM, RF, and GBM), and
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permutation feature importance analysis was performed
to identify the critical factors in asthma exacerbation and
understand the interaction between various factors.

Methods

Data collection

Weekly counts of patients with asthma in South Korea
from 2015 to 2019 were collected by the Health Insur-
ance Review and Assessment Service. Patients with
asthma were defined as those aged 17 years or older
who visited a healthcare facility and were diagnosed
with asthma (ICD-10 codes J45, J46, J820, and J828).
The number of outpatients and emergency room (ER)
patients with asthma was determined separately. Envi-
ronmental data were collected from South Korea from
2015 to 2019. Daily air pollutant concentrations of CO,
NO,, O, PM,,, PM,;, and SO, were collected from 556
nationwide measurement stations by the Korea Environ-
ment Corporation. Daily meteorological data on mean
temperature, minimum temperature, maximum tem-
perature, diurnal temperature range, humidity, precipita-
tion, solar radiation, and wind speed were collected from
100 measurement stations in South Korea by the Korea
Meteorological Administration. The data collected from
multiple measurement stations spread across the entire
nation were averaged to obtain national air pollution
and meteorological data. Any missing values, if present,
from the measurement stations were excluded during the
averaging. Data regarding the hazard index of the daily
pollen concentration from oaks, pines, and grasses were
obtained from the Korea Meteorological Administration.
This index was designed to forecast pollen concentra-
tions based on meteorological and environmental factors
(see Additional file 1: Table S1 for a detailed descrip-
tion). Weekly numbers of influenza and Middle East res-
piratory syndrome (MERS) patients were collected by
the Korea Centers for Disease Control and Prevention.
Patients with influenza were defined as those diagnosed
with influenza (ICD-10 codes J10.0-J11.8) or those who
had an influenza-like illness (ILI). ILI is defined by WHO
as a respiratory infection with onset within the past ten
days and a fever of>38 °C and cough or sore throat.
Daily and regional data were averaged and converted into
weekly national data for South Korea.

Prediction of patients with asthma using environmental
factors based on deep learning algorithms

To model the relationship between the number of
patients with asthma (outpatients or ER patients) and
environmental factors, we used 18 environmental fac-
tors and four potential confounders as input data. The
18 environmental factors included six air pollutant con-
centrations (CO, NO,, O;, PM,,, PM, ;, and SO,), three
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pollen concentrations (pollen from oaks, pines, and
grasses), eight meteorological conditions (mean tem-
perature, minimum temperature, maximum temperature,
diurnal temperature range, humidity, precipitation, solar
radiation, and wind speed), and the number of patients
with influenza. The four confounders were the week of
the year, date, number of holidays per week, and number
of patients with MERS. The week of the year is an indi-
cator of where a particular week falls numerically within
a year. The first week (week 1) of the year is defined as
the week containing the first Wednesday of the year.
For each year from 2015 to 2019, the week of the year is
numbered from 1 to 52. The date is a number that inci-
dates a specific point in time, and it is calculated as the
number of days that have passed since January 1, 1970.
These were used to model the confounding effects of sea-
sonality, long-term trends, holidays, and the 2015 MERS
outbreak. All input factors were preprocessed with mini-
mum-maximum normalization before modeling.

We used the RNN, LSTM, and GRU as the deep
learning algorithms. The model consisted of four lay-
ers: an input layer, two hidden layers, and an output
layer. Recurrent cells were used only in the input layer,
whereas simple, fully connected neural network cells
without recurrent connections were used in the hidden
and output layers to simplify the model (see Additional
file 1: Figure S1 for the topology). Dropout techniques
were applied to all layers to prevent overfitting [19, 20].
The optimum model size and dropout rates were selected
empirically by finding the best model among various can-
didates (see Additional file 1: Table S2 for the hyperpa-
rameter candidates). We used walk-forward expanding
window cross-validation, where data from 2015-2016,
2015-2017, and 2015-2018 were used for training and
data from 2017, 2018, and 2019 were used for testing,
respectively. Walk-forward cross-validation is a well-
known validation method for time-series data to remove
the possibility of prediction leakage [21, 22]. The length
of time steps in RNN, LSTM, and GRU was set as 5 weeks
to model the long-term lagged effects of environmental
factors on asthma, and the training learning rate was set
as 0.004. During training, the mean squared error (MSE)
for the test set was monitored, and training was stopped
when the observed MSE did not improve after 50 epochs.
The modeling and training were implemented using the
Python packages “keras” and “tensorflow” [23, 24].

Comparison with conventional modeling methods

We compared the R? values of the neural network models
with those of the GLM, GAM, RF, and GBM. The input
and output variables used for modeling were identical to
those used for the deep learning algorithms. The GLM
and GAM were fitted using the maximum likelihood
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method under the assumption of a quasi-Poisson distri-
bution. For the modeling and training of RF and GBM,
the “sklearn” package of Python was used. The model
hyperparameters for RF and GBM were optimized using
“best_estimator_” of the “Grid method for the mod-
el’s trainingSearchCV” function (see Additional file 1:
Table S3 for the candidates) [25].

Permutation feature importance

After modeling, we evaluated the importance of all input
features in the final model based on the permutation fea-
ture importance method [26], where feature importance
is defined as the increase in the MSE when the values of a
single feature are temporally shuffled. This method helps
identify features with high contributions in predicting the
output. In addition, we define the interaction between
the two features as follows:

I = Flgp — FlI4 — Flg (1)

here, I is the interaction between two features, A and B,
Fl,p is the increase in MSE with both A and B shuffled,
FI, is the increase in MSE with A shuffled, and FI; is the
increase in MSE with B shuffled.

Results

General analysis of the number of patients with asthma
Figure 1 shows the weekly numbers of outpatients and
ER patients with asthma in South Korea for each year
from 2015 to 2019 (see Additional file 1: Figure S2 for the
5-year curves and Additional file 1: Table S4 for descrip-
tive statistics). From 2015 to 2019, the number of outpa-
tients with asthma decreased, whereas the number of ER
patients with asthma increased. The number of patients
with asthma showed seasonal variability (Fig. 1), with
the lowest in summer (July and August) and the highest
in winter (December and January) and spring (March
and April). Additional file 1: Figures S3-S8 show the
time-series curves of various independent variables, and
Additional file 1: Tables S5 and S6 show the descriptive
statistics for air pollutant concentrations and climate
conditions in South Korea during the study period.

The areas shaded in green in Fig. 1 (between Weeks 1
and 4, and between Weeks 48 and 52) show the weeks
when the number of influenza patients surged, espe-
cially in 2018 (see Additional file 1: Figure S3 to find
the surge in influenza patients). As shown in the figure,
the number of patients with asthma increased during
this period. The areas shaded in blue show the weeks
in which the two biggest holidays in Korea, Lunar
New Year’s Day (between Weeks 4 and 8) and Korean
Thanksgiving Day (between Weeks 36 and 41), were
located. During the holidays, the number of outpa-
tients shows downward spikes due to the holiday clinic
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Fig. 1 The number of outpatients and ER patients with asthma in South Korea each year from 2015 to 2019. The areas shaded in green, red,
and blue highlighted the weeks when the numbers of influenza patients, patients with MERS, and holidays surged, respectively. The peaks

in the green and blue periods correspond to the peaks in the number of influenza patients and the number of holidays in a week. The smaller
number of ER visits during the red period in 2015 compared to 2016-2019 can be attributed to the MERS outbreak that occurred in 2015

closures. In contrast, the number of ER patients shows
upward spikes due to the “balloon effect” of the holiday
clinic closures. This study used the number of holidays
per week (Additional file 1: Figure S3) to model the con-
founding effects of holidays. The area shaded in darker
red in Fig. 1 (between weeks 21 and 28) represents the
weeks in 2015 when the MERS outbreak occurred in
South Korea (see Additional file 1: Figure S3 for the
number of patients with MERS). MERS is one of the
16 diseases classified as a “Class 1 infectious disease,” a
term used for diseases of significant health importance
owing to its high mortality rates; it was the only Class 1
infectious disease that caught public attention in South
Korea during the study period. The area in lighter red
(between weeks 28 and 32) shows the weeks between
the last identification of patients with MERS and South
Korea’s official declaration of a “de facto end” to MERS
(July 28, 2015). During this period, the number of ER
visits in many tertiary hospitals where patients with
MERS were admitted was significantly reduced in 2015
because people were afraid of being infected. Since the
MERS outbreak only occurred in 2015, the number of

ER visits between weeks 21 and 32 in 2015 was appar-
ently smaller than those during 2016-2019 as shown in
Fig. 1.

This is a confounding effect of Class 1 infectious dis-
eases, such as MERS, and we attempted to model this
effect using the number of patients as an independent
variable. Note that there is a four-week lag between the
last identification of the patient with MERS (Week 28)
and getting back to normal with the declaration of “de
facto end” (Week 32). LSTM and GRU are suitable for
modeling such long lags using their long-term memory.

Modeling patients with asthma based on deep learning
algorithms

To determine the best model for predicting the number
of patients with asthma, we generated and trained 648
models of RNN, LSTM, and GRU (216 models each) and
evaluated them with R? based on a walk-forward cross-
validation framework. Figure 2 shows the R? histograms
of 216 RNN, LSTM, and GRU models. The LSTM and
GRU models performed better than the RNN models
in predicting the number of patients with asthma. This



Hwang et al. Respiratory Research (2023) 24:302

RNN [ ] LsT™

Outpatients

N
3
1

Frequency
(&)
o
1

N
&
1

0.0 1

T T T T T
0.3 0.4 0.5 0.6 0.7

Page 5 of 9
GRU
ER patients

10.0 =

7.5+

5.0 -

2.5 /

0.0+ ===

1 I 1 I
0.3 0.4 0.5 0.6

R? of test sets

Fig. 2 Performance (R?) histograms of 216 RNN, LSTM, and GRU models

may be due to the internal gates that solve the vanishing
gradient problem in the RNN. Our results show that, in
general, LSTM models perform slightly better than GRU
models. This may be due to the higher number of gates in
the LSTM model than in the GRU model (three in LSTM
and two in GRU), providing more flexibility in modeling.

Additional file 1: Figure S9 shows the performance (R?)
scatter plot for the 648 RNN, LSTM, and GRU models.
The top 10% of the models are located in Area 1. Addi-
tional file 1: Table S7 lists all hyperparameter values of
the models in Area 1. For the final model, we selected the
model that provided the best average performance for
outpatients and ER patients (R? values of 0.723 for outpa-
tients and 0.650 for ER patients).

Performance comparison of asthma patient predictive
models

Table 1 compares the performances of the final RNN,
LSTM, and GRU models with those of conventional algo-
rithms. The hyperparameters used in the final model
are listed in Additional file 1: Table S7. Based on our
results, LSTM was the best model for outpatients and

ER patients, with R? of 0.723 and 0.650, respectively. This
algorithm performed better than the other algorithms
investigated in this study. The ensemble-based mod-
els (RF and GBM) performed the worst for both outpa-
tients and ER patients (R? of — 0.321-0.583), whereas the
regression-based models (GLM and GAM) ranked in the
middle (R* of 0.631-0.706).

The R? gap between the training and test sets was the
smallest for the GLM, indicating the least overfitting
among all algorithms. This is likely the result of linear
modeling, which has a lower chance of overfitting than
nonlinear modeling. The R? gap was most significant for
RF and GBM, indicating considerable overfitting. The
gaps for RNN, LSTM, and GRU were smaller than those
for GAM, RF, and GBM, despite the complexity and flex-
ibility of the models. This results from the dropout and
early stopping techniques implemented in training.

Feature importance analysis

Figure 3 shows the results of the feature importance anal-
ysis for outpatients and patients in the ER. In Fig. 3, the
blue dashed line shows the model’s baseline MSE, and

Table 1 Performance (R?) comparison among various algorithms for training and test sets

Model Training Test Gap (Training-Test)
Outpatients ER patients Outpatients ER patients Outpatients ER patients

GLM 0.870 0.792 0.672 0.637 0.198 0.155
GAM 0.943 0.888 0.706 0.631 0.237 0.257
RF 0.857 0.508 0.540 -0.321 0317 0.829
GBM 0.957 0.907 0.583 -0.128 0374 1.035
RNN 0.894 0.803 0.625 0.606 0.269 0.197
LSTM 0.886 0.861 0.723 0.650 0.163 0.211
GRU 0.905 0.827 0.673 0.651 0.232 0.176
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Fig. 3 Feature importance of (a) outpatients and (b) ER patients

any feature that yielded a higher MSE than the baseline
after shuffling was considered significant (the higher the
value, the more important it is). Influenza was one of the
most important factors for outpatients and ER patients
among the various environmental factors. Influenza
can cause airway swelling, trigger asthma attacks, and
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exacerbate symptoms [27]. Temperature substantially
impacted the number of outpatient visits and had little
effect on the number of ER visits. This can be interpreted
as the temperature being associated more with the grad-
ual development of asthma than the acute development
of asthma, which causes patients to visit non-emergency
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care facilities. Among four temperature-related factors
(mean, maximum, minimum, and diurnal temperature
range), the diurnal temperature range and minimum
temperature were the two most critical factors affecting
outpatients with asthma. Air pollutants such as NO,, CO,
and PM,, had a significant impact on outpatients while
they had little impact on ER patients. This may indicate
that asthma exacerbation attributable to NO,, CO, and
PM,, is not severe enough for patients to visit ER. Pine
pollen had a substantial impact on the number of ER
patients with asthma, whereas it had a relatively smaller
impact on the number of outpatients with asthma. The
association between pine pollen and ER patients with
asthma can be observed in Additional file 1: Figure S8
during the pine pollen season (between weeks 16 and
20). The week of the year and the number of holidays
per week were also important in modeling the seasonal
variability and confounding effect of holiday clinic clo-
sure, respectively. Additional file 1: Figure S10 shows the
two-dimensional feature importance analysis. Our result
indicates that the simultaneous exposure to both NO,
and CO has a synergic effect on asthma exacerbation.
However, there is no significant interaction effect among
other environmental factors.

Discussion

The climate is known for impacting asthma directly
through the airway response to climate or indirectly
through altered exposure to air pollutants, allergens,
and pathogens [28]. For example, high temperatures
increase the ambient ozone through a photochemical
reaction [29]. In addition, abrupt changes in weather and
an extensive diurnal temperature range can increase the
risk of asthma by affecting inflammatory responses and
immunity [30—-32]. In this study, we examined the associ-
ation between outpatients with asthma and climate, and
we showed that diurnal temperature range and minimum
temperature are important factors in modeling. This
result agrees with the results of previous studies. Chen
et al. showed that both low and high temperatures were
associated with an increased risk of asthma, whereas the
majority of the burden was attributable to moderate cold
exposures [2]. Xu et al. and Kim et al. studied the rela-
tionship between the diurnal temperature difference and
asthma [33, 34].

Air pollutants are associated with asthma through both
direct and indirect mechanisms [35]. The infiltration
of air pollutants can directly trigger inflammation and
increase oxidative stress, which may lead to cell and tis-
sue damage in airways [36—38]. Air pollutants can also be
involved in indirect mechanisms interacting with inhaled
pathogens and allergens, thereby increasing the risk of
infections and allergic reactions [35]. The influence of
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NO, and CO on asthma patients was observed in this
study, which agrees with a previous study demonstrat-
ing the impact of exposure to traffic emissions such as
NO, and CO on asthma [39]. Additionally, PMs may act
as a container for allergens and pathogens such as pollen,
fungal spores, and viruses, delivering them deep into the
airways [40, 41]. In this study, the risk of asthma exacer-
bation with PM,, was higher than that with PM, -, which
is consistent with the results of a previous study by Tecer
etal. [42].

Influenza infection can trigger an immune response
by releasing cytokines and increasing susceptibility to
asthma [27, 43]. Several studies have reported that influ-
enza is associated with asthma exacerbation in adults [10,
44, 45].

This study had a few limitations. First, public environ-
mental data was measured at official stations, instead
of personal exposure data. This may have resulted in
the underestimation of the actual impact of exposure
to asthma-exacerbating environments. Second, demo-
graphic factors (such as age, gender, and sex) and socio-
economic conditions (such as occupation, income level,
and educational attainment) were not considered in this
study because such information was unavailable. Addi-
tional studies are warranted to consider such factors in
modeling to increase the accuracy.

Conclusions

This study is the first to analyze the association between
outpatients and ER patients with asthma and 18 environ-
mental factors, including air pollutants, weather condi-
tions, pollen, and influenza, in South Korea. Additionally,
it proved the relative and quantitative importance of
all 18 factors in terms of asthma exacerbation. Models
with various hyperparameter values were evaluated to
optimize the deep learning algorithm. With the opti-
mal hyperparameters, we found that LSTM was the best
model for predicting patients with asthma among the
eight algorithms studied. It can model nonlinear lagged
relationships with interactions between features without
causing multicollinearity and overfitting problems. From
feature importance analysis, we found out that influenza
and pine pollen were the two most important factors
exacerbating asthma in outpatients and ER patients.

Abbreviations
GLM Generalized linear model

GAM Generalized additive model
DLNM  Distributed lag nonlinear model
RF Random forest

GBM Gradient boosting machine
RNN Recurrent neural network

LSTM Long short-term memory

GRU Gated recurrent unit
PM Particulate matter
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