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A R T I C L E  I N F O   
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A B S T R A C T   

Purpose: To quantify interobserver variation (IOV) in target volume and organs-at-risk (OAR) contouring across 
31 institutions in breast cancer cases and to explore the clinical utility of deep learning (DL)-based auto- 
contouring in reducing potential IOV. 
Methods and materials: In phase 1, two breast cancer cases were randomly selected and distributed to multiple 
institutions for contouring six clinical target volumes (CTVs) and eight OAR. In Phase 2, auto-contour sets were 
generated using a previously published DL Breast segmentation model and were made available for all partici
pants. The difference in IOV of submitted contours in phases 1 and 2 was investigated quantitatively using the 
Dice similarity coefficient (DSC) and Hausdorff distance (HD). The qualitative analysis involved using contour 
heat maps to visualize the extent and location of these variations and the required modification. 
Results: Over 800 pairwise comparisons were analysed for each structure in each case. Quantitative phase 2 
metrics showed significant improvement in the mean DSC (from 0.69 to 0.77) and HD (from 34.9 to 17.9 mm). 
Quantitative analysis showed increased interobserver agreement in phase 2, specifically for CTV structures 
(5–19 %), leading to fewer manual adjustments. Underlying IOV differences causes were reported using a 
questionnaire and hierarchical clustering analysis based on the volume of CTVs. 
Conclusion: DL-based auto-contours improved the contour agreement for OARs and CTVs significantly, both 
qualitatively and quantitatively, suggesting its potential role in minimizing radiation therapy protocol deviation.   

1. Introduction 

Radiation therapy (RT) protocol deviations and non-compliance can 
be associated with a higher risk of treatment failure and mortality in 
clinical trials [1,2]. Among them, interobserver variation (IOV) in RT 
contouring is one of the biggest concerns [3,4]. As modern RT tech
niques allow for more accurate beam delivery with high conformality 
and precision, contouring has become increasingly important. However, 
data show that even radiation oncologist experts have difficulty con
touring [5]. Furthermore, multiple studies have demonstrated signifi
cant IOVs in delineating target volumes, including clinical target 
volumes (CTVs) and organs-at-risk (OARs), in various types of cancers, 
both within and outside clinical trials [6–10]. The magnitude of IOV is 
often larger than that of variations related to organ movement and 
set-up uncertainties [11]. 

In recent decades, emphasis has been placed on improving IOV in 
contouring. These strategies include the widespread publication of site- 
specific atlases and consensus guidelines [12], often trial-specific guid
ance documents, education, audits, and peer-review as RT quality 
assurance (RTQA) tools. Benchmark studies, often referred to as dummy 
runs, are routinely conducted at the outset of clinical trials or individual 
case reviews (ICR) [13,14]. These studies, whether conducted prospec
tively or retrospectively, serve as established and essential components 
of the RTQA process in clinical trials. While previous methods have 
demonstrated their ability to enhance Interobserver Variability (IOV), 
they each come with their own limitations. This underscores the ne
cessity of exploring alternative approaches to address IOV in contouring 
[15]. 

Deep learning (DL) is based on artificial neural networks and is being 
progressively introduced to aid radiation oncology. DL-based auto- 
contouring has been actively studied inhead and neck, prostate, and 
breast cancers, demonstrating significant benefits in terms of time- 
saving and improved contouring IOV [16]. Additionally, auto-contour 
is more interactive than static guidelines and atlases. This enhanced 
interactivity simplifies the process of tailoring anatomical contours to 
individual patients, which is particularly valuable in cases involving 
varying body shapes and treatment positioning [6]. To the best of our 
knowledge, no studies have investigated the clinical utility of DL-based 
auto-contouring within RTQA programs. In this context, the Korean 
Radiation Oncology Group (KROG) conducted a study on IOV in con
touring the CTV and OARs in breast RT after breast conservation surgery 
or mastectomy with immediate breast reconstruction (KROG 21–01). 
Members of the KROG group delineated contours on simulated 
computed tomography (CT) images. Here we report the results of con
touring IOV and assess the impact of DL-based auto-contouring on 
reducing IOV. 

2. Materials and methods 

2.1. Study 

The contouring study consisted of two phases: 1) Phase 1 (Baseline), 
which aimed to investigate manual contouring variations, and 2) Phase 
2 (AI Intervention), which aimed to investigate whether there were any 
changes in contouring variations when auto-contouring was provided 
(Supplementary Fig. 1). Two left-sided breast cancer cases were 
randomly chosen by an independent institution to avoid bias, and then 
sent to the members of the KROG for a preclinical dry-run contouring 
study. Case 1 was a T1cN1M0 (tumour size 1.5 cm, three positive axil
lary lymph nodes, triple negative subtype, and histologic grade 3) who 
had previously undergone breast conservation surgery. Case 2 was 
T3N1M0 (tumour size 9.5 cm, one positive axillary lymph node, luminal 
A type, and histologic grade 2), who underwent mastectomy with im
mediate subpectoral implant-based breast reconstruction. These two 
cases were used to evaluate contouring IOV at multiple institutions. For 
each case, several key images from the same CT and magnetic resonance 
imaging (MRI) scans were distributed to the participating investigators, 
along with other clinical information for radiation therapy treatment. 
This study was approved by the institutional review board of Seoul 
National University Hospital (H-2102-029-1193) and ethical review 
board of Korean Radiation Oncology Group (KROG 21–01). 

In phase 1, each participant was instructed to contour the target 
volumes and OARs. The European Society for Radiation and Oncology 
consensus guideline [12,17] was suggested to aid the contouring of 
CTVs (CTV axillary levels 1, 2, and 3 [CTVn_L1, 2, 3], intramammary 
node [CTVn_IMN], supraclavicular node [CTVn_SCL or CTVn_L4], and 
CTV [CTVp_breast]); however, clinical discretion was allowed based on 
their experience and knowledge. The planning target volume (PTV) was 
generated using a non-isotropic geometrical expansion based on the 
participants’ institutional policy. OARs included the heart, contralateral 
breast (CLB), thyroid, esophagus, spinal cord, left and right lungs (Lung 
R, L), and left anterior descending artery (LAD). Thirty-one institutions 
participated in the first phase of this study. From each participating 
institution, one board-certified radiation oncologist who specializes in 
breast cancer radiation therapy and actively performs target volume 
delineation for treatment planning was selected. The median years of 
experience of the observers is 10.5 years, with a standard deviation of 
7.4 years. 

Auto-contour sets containing target CTVs and OARs were generated 
on the test cases (i.e., Cases 1 and 2) using a previously published in- 
house DL model that has been used in clinics since 2020 [18]. The DL 
model used in this study had previously been tested on both internal and 
external cohorts of breast cancer patients, demonstrating robust 
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performance in left-sided, right-sided, and bilateral breast cancer. The 
model was chosen because of the limited availability of contour tools 
that encompass all the CTVs used in this study. Six months after phase 1, 
the same participants took part in phase 2. In Phase 2, participants were 
instructed to use auto-contour sets, but were given flexibility to deviate 
from them if they disagreed with their quality or found them uncom
fortable to use. 

2.2. IOV analysis 

The quantitative metrics for performance evaluation included the 
Dice similarity coefficient (DSC), 95 % Hausdorff distance (HD), and 
added path length (APL). DSC is the most widely used metric in medical 
image segmentation, which defines the overlap between two volumes of 
interest [19]. Surface DSC is a variation of the DSC that quantifies the 
deviation between OAR surface contours [20]. HD is a measure of the 
surface distance between two point sets, A and B, defined as Equation 
(1). 

H(A,B) = H(A,B) = max{h(A,B), h(B,A)} (1) 

HD95 denotes the maximum surface-to-surface separation among 
the 95th percentile of the ground-truth and segmentation surface points. 
Lastly, APL is a more recently introduced metric that represents all 
manual adjustments made in terms of the number of pixels added or 
removed and was previously reported to be more closely related to 
actual editing time [21]. 

For qualitative evaluation, a questionnaire containing the following 
questions was sent to all observers who participated in this study:  

- Question 1: “How much time did it take to complete the contours for 
each phase?” Answers were “<30 min,” “30–60 min,” and >1 h”  

- Question 2: “How would you rate the auto-contour quality?” where 
the answers were given on a 5-point scale ranging from 1 (not 
useable) to 5 (no edits needed).  

- Question 3: ‘Do you think auto-contouring will help reduce IOV in 
the future?’ on a 5-point scale ranging from 1 (strongly disagree) to 5 
(strongly agree).  

- Question 4: “How much auto-contour did you utilize in Phase 2?” on 
a 5-point scale from 1 (not at all) to 5 (very much). 

We included both two-dimensional (2D) and three-dimensional (3D) 
heat maps to visualize interobserver agreement and areas of manual 
edits with respect to the edited auto-contour (reference contour). A ra
diation oncologist with 9 years of experience (author J.S⋅C) edited the 
auto-contour sets, and an independent panel of three radiation oncolo
gists (authors K⋅K, K⋅H⋅S, and Y⋅B⋅K) finalized it as a reference. The 2D 
heatmap shows variations among observers, with values ranging from 
0 to 31 (Supplementary Fig. 3). The areas with the greatest and least 
overlap are indicated in red and blue, respectively. A three-dimensional 
heatmap was created to show the average adjustment of the participants 
projected on the reference shape of each OAR. The nearest point on the 
participant’s 3D surface was determined using reference 3D surface. 
Subsequently, we determined whether the point was outside or inside 
the closed reference surface. Depending on the degree of adjustment, 
each point was represented by a colour map ranging from red (i.e., 
maximum outward expansion of 10 mm) to blue (i.e., maximum inward 
shrinkage of 10 mm). 

Hierarchical clustering was conducted in R 1.0.12 using the pheat
map package, only including 26 observers who contoured all structures 
of interest. The reference volume was the ground-truth reference con
tour. Euclidean distance and complete linkage were used as the distance 
metric and linkage algorithm, respectively. Values were standardized in 
the column direction. 

3. Results 

In total, 31 and 30 institutions participated in phases 1 and 2, 
respectively. To assess IOV, participants contoured 15 structures in two 
cases, resulting in 465 and 435 paired comparisons per case, and 930 
and 870 paired comparisons per structure. Significantly improved IOV 
and stronger alignment with the consensus contour were observed in 
Phase 2 (Table 1). Surface DSC results were lower than DSC in CTVs, 
although higher values were observed for smaller structures like the 
thyroid and LAD. HD also decreased across all structures. For example, 
the DSC for the LAD increased from 0.44 to 0.61. CTVs had a greater IOV 
(i.e., less DSC) than OARs, except for the LAD. Additionally, the phase 1 
contours were evaluated against an unedited DL model (Supplementary 
Table 1C). The DL model showed similar resemblance to the consensus 
contour, but lower similarity in structures like the LAD (DSC of 0.19 vs. 
consensus of 0.50) and the spinal cord (DSC of 0.66 vs. consensus of 
0.76). 

Phase 2 had larger areas of strong interobserver agreement than 
Phase 1, as shown by the smaller blue regions in the CTVs (Supple
mentary Fig. 3). For case 1, the percentage of CTV breast with high 
agreement indicated by red was 16.2 % in Phase 2 versus 8.7 % in Phase 
1. For case 2, the difference was even higher with 25.0 % in Phase 2 
versus 9.9 % in Phase 1. This trend was consistent in other CTVs such as 
CTVn_L2 and CTVn_SCL, as shown in Supplementary Figs. 4 and 5. 
Interestingly, there was a mixed response in the area of the recon
structed breast in case 2. In Phase 1, a larger number of observers 
(approximately 20) opted to encompass the central portion of the breast 
implant, whereas in Phase 2, a smaller contingent (approximately 10) 
made this choice. Additionally, there were notable enhancements in 
OARs from Phase 1 to Phase 2, although to a lesser extent (Supple
mentary Fig. 6). 

Three-dimensional heatmaps were used to confirm the areas of each 
structure where most edits were made. It was discovered that observers 
were less likely to edit in phase 2, as implied by fewer red and blue 
regions that indicate outward or inward contour modification, respec
tively (Fig. 1). The severity of contour adjustment was generally much 
lower in Phase 2. Phase 2 contours had a higher proportion of green 
regions (i.e., areas similar to the reference), as best shown by the 
CTVn_L1 and CTVn_IMN contours. In phase 1, physicians were more 
likely to draw contours towards the skin for CTVn_L1, whereas, in phase 
2, this was significantly reduced. Furthermore, based on the heatmaps, 
the starting points for CTVn_L2 and CTVp_breast varied more in phase 1 
than in phase 2. 

For phase 1, the percentage of time taken to complete contours was 
greatest at 30–60 min time intervals (Fig. 2A). Conversely, the greatest 
percentage of time taken was in the less than 30 min interval in phase 2, 
with more than half of the observers responding to this category. As 
shown in Fig. 2B, for the target structures, the percentage of minor edits 
was the greatest, followed by major edits, mostly acceptable and not 
useable, at 53.2 %, 36.2 %, 6.4 %, and 4.3 %, respectively. For OARs, 
observers were generally satisfied with the auto contour, with contour 
quality requiring only minor edits or less, although no one answered that 
they were perfect. The extent to which users used the AI-produced 
baseline was positively correlated with both the R2 contour assess
ment score (Question 2) (r = 0.88) and future score (Question 3) (r =
0.82). The degree of utilization was positively correlated with both the 
contour evaluation score (Question 2) and future score (Question 3), 
with R2 values of 0.88 and 0.82, respectively (Fig. 2C). 

Using a hierarchical clustering heatmap, we discovered that radia
tion oncologists could be classified based on their contouring style, 
whether they drew smaller or larger than the auto-contours (Fig. 3). 
Observers who failed to include the required structures fully were 
excluded from this part of the analysis, leaving 26 observers. The 
outermost clustering indicates that observers are divided into two major 
groups. Out of 26 observers, approximately 20 % tended to contour 
larger than the reference. The rest did not have distinct contouring 
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patterns, although further grouping was performed. 

4. Discussion 

This study first assessed the magnitude of IOV in CTV and OAR 
contouring in left-sided breast RT with regional nodal irradiation. 
Similar to a previous study (KROG 19–01) [22], there was substantial 
IOV among observers in contouring some OARs and the majority of CTVs 
in Phase 1. The widespread use of intensity-modulated radiotherapy in 
breast RT, as supported by recent phase 3 randomized trials [23–25], 
suggests that contouring deviations may have a more significant impact 
on RT-related toxicity and local control than previously thought. We 
investigated the role of DL-based auto-outlines as novel interventions 
which can be incorporated into RTQA programs in multicentre clinical 
trials. Our study demonstrated a significant reduction in IOV in OARs 
and various CTVs through interventions. Our findings included a local 
assessment of contour editing and a classification of the contouring 
preferences and styles of the observers, which we consider a key feature 
that distinguishes the current study from others. More specifically, the 
participants’ contours were successfully aligned to auto-contour refer
ence shapes in 2D and 3D representations, allowing us to pinpoint the 
local anatomical regions of common adjustments among the partici
pants. Furthermore, cluster analysis based on the volume of various 
CTVs could classify the participants based on the observer contouring 
style. Such information can be useful in providing feedback on unac
ceptable protocol deviations and may allow local investigators to 
improve the contouring of enrolled patients. 

Multiple studies have evaluated the effectiveness of interventions, 
including guidelines and atlases [26] and teaching [27], and these in
terventions were associated with improved IOV in contouring. This 
study found that using DL-based auto-contours increased the average 
DSC from 0.69 to 0.77. These figures are slightly higher, yet consistent 
with previous studies [27,28]. An Italian study reported an overall 

median DSC of 0.66 in nodal delineation in the presence of guidelines 
[29]. Another aspect that distinguishes our study from others was the 
visual demonstration of improvement in contouring IOV in 2D and 3D 
heatmaps, identifying specific regions of IOV improvements. Compared 
with guidelines and atlases, our findings indicated that providing 
auto-contours to edit saves time and can be utilized to measure one’s 
performance against a benchmark reference. Although there are 
well-known benefits to using DL-based auto-segmentation, there are also 
some criticisms that should be considered, such as limited generaliz
ability, the need for manual correction, and a lack of transparency. 
While external validation and model updates are crucial in the aspects of 
algorithm development and model management, human bias, man
ifested as diverse individual expectations, is one of the most significant 
factors reducing clinical acceptance on the user’s end. Unsurprisingly, 
the extent of the disagreement with provided auto-contours was 
inversely correlated with the degree of auto-contour use (Fig. 2). Ciardo 
et al. [29] found that the degree of expertise significantly impacted the 
volume size of nodal targets and IOV, with junior oncologists having 
lower IOV than seniors or experts. This implies that similar to guideline 
intervention, human factors such as the observers’ own experience and 
knowledge accounted for residual contouring IOV after interventions. As 
reported by McIntosh et al. [30], these human factors were also the 
primary cause for the decreased likelihood of selecting a DL-based RT 
plan during the prospective deployment phase, highlighting the 
importance of addressing them. 

Vaassen et al. [31] recently analysed user adjustments after DL 
auto-contouring in the thorax region of nearly 700 cases, including 
breast cancer, and found large adjustments in some specific regions for 
most OARs. In our study, 2D and 3D heatmaps were used to visualize the 
areas of IOV and the degree to which each user adjusted the structures to 
suit their preferences in six directions relative to reference contours. We 
found that most auto-contours were under-segmented to some extent 
and most CTVs had an asymmetric distribution of IOV regions. In 

Table 1 
Quantitative evaluation through interobserver comparison (a) and with reference to consensus contour (b). Abbreviations: DSC = dice similarity coefficient; SD =
standard deviation; HD = Hausdorff distance; CTVn_L1 = CTV axillary level 1; CTVn_L2 = CTV axillary level 2; CTVn_L3 = CTV axillary level 3; CTVn_IMN =
intramammary node; CTVn_SCL = supraclavicular node; CTVp_breast = clinical target volume; CLB = contralateral breast; Lung R = right lung; Lung L = left lung; 
LAD = left anterior descending artery.   

(a) Interobserver Comparison (b) Comparison to consensus contour 

DSC (±SD) Surface DSC (±SD) HD (±SD) DSC (±SD) Surface DSC (±SD) HD (±SD)  

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 
CTVn_L1 0.58 ±

0.13 
0.67 ±
0.22 

0.43 ±
0.14 

0.55 ±
0.25 

42.96 ±
29.29 

31.65 ±
33.63 

0.64 ±
0.12 

0.73 ±
0.17 

0.44 ±
0.14 

0.58 ±
0.18 

27.93 ±
18.27 

19.89 ±
23.64 

CTVn_L2 0.51 ±
0.17 

0.70 ±
0.25 

0.44 ±
0.16 

0.64 ±
0.25 

46.22 ±
35.59 

24.83 ±
24.20 

0.52 ±
0.20 

0.65 ±
0.21 

0.46 ±
0.19 

0.60 ±
0.20 

56.12 ±
32.07 

36.45 ±
27.58 

CTVn_L3 0.47 ±
0.14 

0.55 ±
0.23 

0.45 ±
0.14 

0.54 ±
0.23 

41.47 ±
38.70 

28.72 ±
28.12 

0.49 ±
0.18 

0.61 ±
0.20 

0.47 ±
0.18 

0.60 ±
0.21 

35.56 ±
30.95 

21.31 ±
23.80 

CTVn_IMN 0.52 ±
0.13 

0.61 ±
0.16 

0.65 ±
0.16 

0.72 ±
0.16 

35.46 ±
29.96 

18.78 ±
19.67 

0.49 ±
0.15 

0.64 ±
0.15 

0.59 ±
0.19 

0.74 ±
0.19 

31.74 ±
27.27 

13.84 ±
15.66 

CTVn_SCL 0.51 ±
0.14 

0.62 ±
0.20 

0.40 ±
0.14 

0.52 ±
0.21 

48.26 ±
32.26 

38.47 ±
34.94 

0.30 ±
0.14 

0.32 ±
0.13 

0.29 ±
0.11 

0.34 ±
0.10 

96.30 ±
38.43 

105.48 ±
42.84 

CTVp_breast 0.75 ±
0.12 

0.80 ±
0.13 

0.59 ±
0.16 

0.72 ±
0.20 

22.52 ±
16.91 

16.01 ±
20.22 

0.73 ±
0.13 

0.81 ±
0.14 

0.64 ±
0.16 

0.79 ±
0.18 

18.02 ±
11.95 

11.99 ±
17.85 

Heart 0.90 ±
0.05 

0.95 ±
0.03 

0.68 ±
0.14 

0.82 ±
0.12 

16.36 ±
12.21 

8.38 ±
6.06 

0.92 ±
0.05 

0.95 ±
0.02 

0.73 ±
0.16 

0.84 ±
0.11 

12.36 ±
8.84 

7.21 ±
4.54 

Contralateral 
breast 

0.81 ±
0.06 

0.89 ±
0.10 

0.61 ±
0.17 

0.79 ±
0.21 

21.70 ±
15.67 

15.22 ±
25.78 

0.84 ±
0.06 

0.92 ±
0.08 

0.67 ±
0.19 

0.87 ±
0.18 

15.57 ±
11.16 

9.17 ±
20.11 

Thyroid 0.75 ±
0.12 

0.79 ±
0.12 

0.86 ±
0.11 

0.89 ±
0.11 

9.72 ±
15.83 

7.03 ±
15.28 

0.79 ±
0.10 

0.82 ±
0.08 

0.90 ±
0.09 

0.92 ±
0.07 

8.10 ±
12.29 

5.47 ±
10.98 

Esophagus 0.77 ±
0.06 

0.81 ±
0.07 

0.89 ±
0.07 

0.91 ±
0.06 

31.62 ±
59.29 

8.52 ±
17.51 

0.81 ±
0.05 

0.83 ±
0.04 

0.92 ±
0.05 

0.94 ±
0.04 

15.70 ±
39.07 

5.18 ±
10.86 

Spinal cord 0.68 ±
0.12 

0.79 ±
0.14 

0.80 ±
0.13 

0.89 ±
0.11 

112.88 ±
111.66 

33.93 ±
64.35 

0.76 ±
0.09 

0.82 ±
0.07 

0.87 ±
0.09 

0.94 ±
0.10 

65.09 ±
86.21 

18.27 ±
44.42 

Lung R 0.97 ±
0.01 

0.98 ±
0.01 

0.95 ±
0.03 

0.97 ±
0.03 

3.86 ± 2.50 2.56 ±
1.80 

0.97 ±
0.01 

0.98 ±
0.01 

0.96 ±
0.02 

0.97 ±
0.02 

2.76 ±
1.18 

1.81 ±
0.86 

Lung L 0.87 ±
0.01 

0.98 ±
0.02 

0.95 ±
0.03 

0.97 ±
0.03 

3.63 ± 1.98 2.35 ±
1.50 

0.97 ±
0.01 

0.98 ±
0.01 

0.96 ±
0.02 

0.97 ±
0.01 

2.86 ±
0.84 

2.15 ±
0.80 

LAD 0.44 ±
0.21 

0.61 ±
0.18 

0.71 ±
0.21 

0.80 ±
0.15 

52.14 ±
59.74 

14.08 ±
15.30 

0.50 ±
0.16 

0.59 ±
0.01 

0.77 ±
0.14 

0.81 ±
0.10 

39.03 ±
51.87 

12.96 ±
13.48  
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Supplementary Table 2, a comparison of the findings with existing 
literature demonstrates that disagreements in most CTVs were most 
noticeable, which implies the limited generalizability of the DL-based 
auto-segmentation model, particularly in target volumes. 

In the RTQA process, various means of feedback can be provided to 

the recruiting centre for any unacceptable deviation. A review of de
viations in target volume delineation indicated that concerns about bias 
in the feedback process persisted, and processes for feedback on the 
quality of contouring deviations were not standardized in previous trials 
[32]. In this context, identifying specific physician styles in CTV 

Fig. 1. A three-dimensional projection of the observers’ average adjustments for Phases 1 and 2 onto the reference shape of each structure. Higher adjustments 
indicate outward adjustments on a scale of − 10 mm–10 mm. Abbreviations: CTVn_L1 = CTV axillary level 1; CTVn_L2 = CTV axillary level 2; CTVn_L3 = CTV axillary 
level 3; CTVn_IMN = intramammary node; CTVn_SCL = supraclavicular node; CTVp_breast = clinical target volume; CLB = contralateral breast; Lung R = right lung; 
Lung L = left lung; LAD = left anterior descending artery. 

M.S. Choi et al.                                                                                                                                                                                                                                 



The Breast 73 (2024) 103599

6

contouring based on volume size (Fig. 3) can produce unbiased and 
individualized forms of feedback; however, it depends on the nature of 
the referenced contours. Ownership of the reference contours, and 
knowledge of the input to the DL algorithm, can increase the likelihood 
of the provided feedback being accepted. The classification in this study 
was performed using only one criterion (the size of the contouring). For 
example, our findings regarding the classification of physicians’ styles 

and identification of groups with a propensity to contour larger areas 
can be utilized later to either provide individual instructions for using 
auto-contour in a broader manner or to personally recommend con
touring in a more restrained manner. However, future research will need 
to evaluate the factors that affect a physician’s contouring approach and 
determine which factors lead to a more individualized model before 
implementing the benchmark credentialing exercise. Additionally, we 

Fig. 2. (A) Time comparison, (B) Subjective evaluation comparison, (C) Left: Relationship between the degree of auto-contour utilization and the evaluation score for 
Cases 1 and 2, Right: Relationship between the degree of auto-contour utilization and the future perspective evaluation score. 
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believe that identifying the extents and areas of disagreement, along 
with user education, can increase the likelihood of capitalizing on 
auto-contours. 

This study has some limitations that should be acknowledged. First, 
our scope was limited to Korean institutions in terms of both partici
pating observers and the dataset used, where relatively smaller breasts 
and body sizes are common. Also, evaluating the IOV in only two cases 
would be limiting. The degree and direction of IOV can vary among 
multinational observers and patient cohorts. Nonetheless, this study 
serves as the foundation for future collaborative research. Secondly, this 
study primarily examined the contouring component of RTQA and did 
not explore other factors such as their impact on planning, delivery, and 
infrastructure. In the next phase, we plan to expand our research to 
include the planning and dosimetric aspects, which can offer insights 
into potential clinical significance. Another limitation of this pseudo- 
trial is its retrospective nature, as multicentre clinical trials may not 
have been completely captured in our study. Finally, due to its retro
spective nature, our study did not assess other important metrics 
reflecting the quality of auto-contours, such as dosimetric impact, time 
savings, qualitative scoring of each case, and the clinical acceptance 
rate. 

5. Conclusion 

In summary, we evaluated the impact of DL-based auto-contouring 
on interobserver variability in a multicenter setting. Our findings indi
cate that the adoption of DL-based auto-contouring technology leads to a 
significant improvement in contour agreement, both qualitatively and 
quantitatively, for OARs and CTVs. Incorporating DL-based auto-con
touring into RT trials and RTQA programs, and including it in educa
tional materials for RTQA feedback, could be a novel and promising 
approach to IOV assessment that should be evaluated in future trials. A 
significant cause of the remaining disagreement in contouring appears 
to be the human element, including human knowledge and experience, 
which may result in the rejection of the offered DL-based auto-contours. 
To reduce the risk of human bias in future clinical studies that use 
automated tools, researchers should continuously work to mitigate 

human bias and consider how receptive users are to these tools. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.breast.2023.103599. 

Fig. 3. Cluster heatmap of observers based on contour volume. Positive values indicate that expert drawn contour has a higher volume than the ground-truth 
reference contour. Abbreviations: CTVn_L1 = CTV axillary level 1; CTVn_L2 = CTV axillary level 2; CTVn_L3 = CTV axillary level 3; CTVn_IMN = intra
mammary node; CTVn_SCL = supraclavicular node; CTVp_breast = clinical target volume. 
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