
Deep learning using computed tomography to
identify high-risk patients for acute small bowel
obstruction: development and validation of a
prediction model : a retrospective cohort study
Seungmin Oh, BAa, Jongbin Ryu, PhDa,b,*, Ho-Jung Shin, MD, MSc,*, Jeong Ho Song, MD, MSc,
Sang-Yong Son, MD, PhDc, Hoon Hur, MD, PhDc, Sang-Uk Han, MD, PhDc

Objective: To build a novel classifier using an optimized 3D-convolutional neural network for predicting high-grade small bowel
obstruction (HGSBO).
Summary background data: Acute SBO is one of the most common acute abdominal diseases requiring urgent surgery. While
artificial intelligence and abdominal computed tomography (CT) have been used to determine surgical treatment, differentiating
normal cases, HGSBO requiring emergency surgery, and low-grade SBO (LGSBO) or paralytic ileus is difficult.
Methods: A deep learning classifier was used to predict high-risk acute SBO patients using CT images at a tertiary hospital. Images
from three groups of subjects (normal, nonsurgical, and surgical) were extracted; the dataset used in the study included 578 cases
from 250 normal subjects, with 209 HGSBO and 119 LGSBO patients; over 38 000 CT images were used. Data were analyzed from
1 June 2022 to 5 February 2023. The classification performance was assessed based on accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve.
Results: After fivefold cross-validation, the WideResNet classifier using dual-branch architecture with depth retention pooling
achieved an accuracy of 72.6%, an area under receiver operating characteristic of 0.90, a sensitivity of 72.6%, a specificity of 86.3%,
a positive predictive value of 74.1%, and a negative predictive value of 86.6% on all the test sets.
Conclusions: These results show the satisfactory performance of the deep learning classifier in predicting HGSBO compared to
the previous machine learning model. The novel 3D classifier with dual-branch architecture and depth retention pooling based on
artificial intelligence algorithms could be a reliable screening and decision-support tool for high-risk patients with SBO.
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Introduction

Acute small bowel obstruction (ASBO) is one of the most com-
mon acute abdominal diseases that may require urgent surgery. In
emergent surgical cases, any delay in operation is known to be
related to significant morbidity and mortality[1]. According to
reports from the United States, ASBO accounts for 12–16% of
surgical hospitalizations, amounting to 300 000 surgeries and
$2.3 billion in medical costs annually[2]. The most common cause

of acute intestinal obstruction is postoperative adhesion (70%),
followed by cancer, inflammatory bowel disease, and hernias[3,4].
The pathophysiology of ASBO progresses from the onset of
intestinal obstruction due to various causes, followed by the
proximal dilatation of the bowel to the occluded area being
deteriorated by the accumulation of fermented gas and shifted
fluids[5]. Prolonged intestinal obstruction and distension can lead
to hypovolemia and increased intramural pressure, leading to
intestinal ischemia or necrosis. Ischemia and bowel wall
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dilatation weaken the intestinal barrier, increasing the risk of
bowel perforation. This risk increases with clinical deterioration
and the duration of unsuccessful medical treatment[6].

Treatment options for ASBO vary considerably depending on
pathophysiological progression. Emergency surgery is essential
when an intestinal infarction or peritonitis is suspected. In addi-
tion, early surgery is required if intestinal ischemia worsens.
However, in ~70% of cases, nonoperative management (NOM) is
successful, and ~20% of patients who have undergone NOMwill
eventually undergo surgery owing to clinical deterioration[1].
Recently, abdominal computed tomography (CT) has been play-
ing a critical role in predicting the failure of NOM treatment.
Several papers have reported using abdominal CT for imaging
findings and modeling[7,8]. However, despite abdominal CT’s
crucial role in deciding ASBO surgical treatment, the radiologic
findings that require surgery are only discovered by experienced
radiologists, and the interobservation variation is relatively
high[9,10]. Recently, artificial intelligence (AI) has been widely
applied to various tasks in medical imaging, and AI can make
predictions as accurately as professional human interpreters[11,12].
Most studies on ASBO and AI have been conducted using simple
radiography. Furthermore, AI studies using abdominal CT are
scarce, and recent ones depend on radiologists’ interpretations
rather than AI-based approaches[13]. Although papers are
reporting the use of AI in abdominal CT, several problems have
been encountered. For example, a recent study conducted by
Vanderbecq et al.[14] successfully detected the transition zone of
ASBO by CT, but it used only ASBO CT and not the normal CT.
The study diagnosed several instances of ASBO from CT; how-
ever, the proposed method cannot classify between normal and
abnormal instances because the study only used abnormal data.
Previously, a pilot study was performed to determine whether an
AI can distinguish between normal and ASBO X-ray images[11].
However, the imbalance between normal and abnormal data was
significant, and the study used non-CT images. It is often clinically
challenging to diagnose patients that are at risk of requiring
emergency surgery. In addition, distinguishing high-risk cases,
such as closed-loop obstructions or SBO by band adhesion, is a
laborious and challenging task for radiologists and clinicians.

In recognition of these problems, this study aimed to establish
a novel AI model that can effectively diagnose ASBO in normal
subjects using only CT images and assist in the early diagnosis
and identification of patients at risk of surgery.

Methods

Dataset

This study has been reported in accordance with the strength-
ening the reporting of cohort, cross-sectional, and case–control
studies in surgery (STROCSS) standards[15] (Supplemental
Digital Content 1, http://links.lww.com/JS9/B23). This study was
registered at cris.nih.go.kr. A single-center retrospective medical
record study at a tertiary institution was designed for this diag-
nostic investigation. The ethical review board authorized this
study. In accordance with the university’s requirements for
retrospective analyses, informed consent was waived. The
research was conducted in accordance with the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD)[16] , the Checklist for Artificial
Intelligence in Medical Imaging (CLAIM)[17] and the Standards

for Reporting of Diagnostic Accuracy Studies (STARD)[18]

(Supplemental Digital Content 2, http://links.lww.com/JS9/B24).
The following dataset refinement process was conducted to

identify a high-risk group that may require emergency surgery for
intestinal obstruction. The participants consisted of three groups,
including the nonsurgical group: patients who visited the emer-
gency department or were admitted to the hospital for ileus
between 1 January 2000 and 31 December 2021; surgical group:
patients who underwent lysis of adhesion for ASBO during the
same period; and the normal subjects: healthy individuals without
any abnormal abdominal CT findings during the health screen-
ings in 2019. Their images were extracted after the anonymization
process. The inclusion criteria were: 18 years and older, CT image
findings with SBO, and mechanism of obstruction caused by the
adhesion. Before this process, we identified normal subjects
(n=1000) without any abnormal abdominal CT findings during
the health screenings conducted in 2019. Since the cause and
clinical aspects of intestinal obstruction are very heterogeneous,
a detailed review of the case was required. Appendices 1
(Supplemental Digital Content 3, http://links.lww.com/JS9/B25)
and 2 (Supplemental Digital Content 4, http://links.lww.com/JS9/
B26) describe the exclusion cases during the refinement process.
Exclusions were made because of nonadhesion mechanisms; other
anatomical locations; or pathological conditions such as malig-
nancy, peritonitis, and inflammatory bowel disease. In addition,
cases with gastrografin use and postoperative ileus within one
month were excluded. Overt ischemia and necrosis of the small
bowel were also excluded. The patient’s demographics are
described in Appendix 3 (Supplemental Digital Content 5, http://
links.lww.com/JS9/B27). The surgical and nonsurgical groups
were investigated to identify patients with high-risk intestinal
obstruction. First, in the nonsurgical group, the ileus-related dis-
ease classification code (similar to the ICD code) was used. Cases
for which abdominal CT images were unavailable and cases of
nonadhesive ASBO were excluded. Cases of high-grade SBO
(HGSBO) were accompanied by one of the closed-loop findings,
adhesive bands, or complete or incomplete high-grade obstruction
with abrupt luminal narrowing. In the case of low-grade SBO
(LGSBO), it was determined that there was fluid-filled distension
of the small bowel, accompanied by one of the following findings:
a low possibility of obstruction or a low-grade or partial
obstruction. In the surgical group, all patients who underwent
abdominal surgery were investigated at the hospital. Cases were
refined according to the criteria of adhesiolysis due to adhesive
SBO. Finally, high-risk surgical findings, such as adhesive bands
or closed loops, consistent with preoperative radiologic findings,
such as high-grade obstruction or strangulation, were included in
the final cohort. Figure 1 shows a flowchart of the above process.
Thus, 209 HGSBO, 119 LGSBO, and 250 normal cases were

HIGHLIGHTS

• We built an artificial intelligence-based model with abdom-
inal computed tomography images to help detect high-risk
patients with acute small bowel obstruction (ASBO).

• A 3D-convolutional neural network model detected high-
risk ASBO patients with high accuracy and efficiency.

• Artificial intelligence models can accurately detect high-
risk ASBO patients, making them reliable screening and
decision-support tools for high-risk patients with ASBO.
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obtained. The dataset was divided into 462 training sets and 116
test sets to build the model, and fivefold cross-validation was
performed.

Development and training of AI system

3D image classification is widely used in the medical field. Some
works[19–23] have used 3D-convolutional neural networks
(CNN) for classifying Alzheimer’s disease. Other studies[24–26]

have used 3D image classification for brain diseases. However,
little research has been done on using 3D image classification to
distinguish ASBO cases.

The proposed network aims to distinguish between CT images
of normal cases, cases of HGSBO that require emergency surgery,
and cases of LGSBO or paralytic ileus. HGSBO and LGSBO are
clinically distinct because a delay in surgical intervention in the
case of HGSBO is known to increase the risk of morbidity and
mortality, particularly in older patients[1,27]; however, the CT
images for both appear similar. Therefore, it is challenging to
classify HGSBO and LGSBO on CT images using a simple net-
work structure. Thus, we propose two approaches for the clas-
sification method: dual-branch architecture (DBA) and depth

retention pooling. For DBA, to enrich the class information of
HGSBO and LGSBO, we trained the features by learning the base
classifier and finer classifier simultaneously; this was to enrich the
class information of HGSBO and LGSBO. In the second
approach, we preserved the depth information in the last feature
map to intensify the subtle information in CT images. Our net-
works based on these approaches effectively distinguish all three
class labels: normal, HGSBO, and LGSBO. A detailed description
of the proposed network is presented in the following
subsections.

DBA

Suppose the architecture simply uses a normal three-label classi-
fier as the last fully connected (FC) layer. In that case, it cannot
distinguish HGSBO from LGSBO, and it cannot properly learn
the conflicting characteristics. Some networks are split into
branches to improve performance[28–31]. Zhang et al.[31] used
multiple branches and outputs resembling ensembles, and Xie
et al.[30] converted one 3× 3 convolution into multiple 3× 3
convolution branches using cardinality. Zhang et al.[31] also split
feature maps using cardinality and by sub-grouping one

Figure 1. Patient selection process. CT, computed tomography; HGSBO, high-grade small bowel obstruction; LGSBO, low-grade small bowel obstruction.

A

B

C
Figure 2. Workflow of the proposed Acute SBO diagnosis network. (A) refers to a feature extractor such as WideResNet; (B) is the base classifier to distinguish
normal, HGSBO, and LGSBO; and (C) denotes a finer classifier that differentiates HGSBO and LGSBO. (C) trains only HGSBO and LGSBO. Green, red, and yellow
pooled feature maps represent normal, HGSBO, and LGSBO, respectively. CT, computed tomography; HGSBO, high-grade small bowel obstruction; LGSBO,
low-grade small bowel obstruction.
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cardinality into several subsamples. Wu et al.[29] split a branch
using different kernel sizes to extract different features. All of
these studies split branches in various ways to extract more
diverse and sophisticated features and improve performance.
Inspired by this, we introduce a DBA. Although a simple FC layer
cannot distinguish and handle similar features, our DBA can
learn the difference between two cases of SBO by synchronously
training the classifier into two branches.

In the DBA, each branch is not trained separately through fine-
tuning but by training from scratch at a time. We trained a net-
work as a generic multiclass classification[32] to discriminate
between normal and two SBOs, as shown in Figure 2B. Figure 2C
shows a finer classifier trained to separate HGSBO and LGSBO,
which are indistinguishable from each other, as in the case of
binary classification. The parameters of the finer classifier were
also updated and used tomakemore accurate predictions. During
inference, the base classifier distinguishes the normal and two
SBO images, and the anticipated abnormal images are sent into
the finer classifier as input. The finer classifier then categorizes the

abnormal images into HGSBO and LGSBO. We use probabilities
from both classifiers if the base classifier predicts that the input
image is abnormal using Equation 1.

P P I argmaxP Pbase SBO base finer= + ( ) ⊙ ð1Þ

DRP

Most diseases are concentrated in extremely small areas of CT
images. Therefore, to capture the information in a small area, it is
essential to retain as much information as possible in the last
pooling layer. However, the conventional method does not con-
sider this point and even ignores the depth information of CT
images in the pooling layer[33]. Therefore, traditional pooling
squashes the depth information while pooling the C×D×7× 7
feature map into C× 1× 1× 1, where C denotes the channel size
and D represents the depth size.

Instead of losing depth information, we contend that 3D
images should retain depth information to learn 3D image fea-
tures appropriately. In other words, lesions such as HGSBO and
LGSBOmay present only at a specific depth in 3D pictures, and it
is critical to be able to learn features by depth in such circum-
stances. Therefore, we propose a method of retaining such depth
information to collect the information present in such small
regions. It performs pooling only in the vertical and horizontal
spatial spaces of the deep features, except for the channel of the
feature map, which represents the depth information of the CT
image. We refer to the proposed method as DRP.

Network architecture with DBA and DRP

The proposed two-stage training strategy, DRP, is a generic
method that can be applied to most deep neural network
architectures. Therefore, we exploited representative CNN
models[30,34–36] for the feature extractor, as shown in Figure 2A.
Once the features of the CT images were extracted, all features
were fed to two FC layers that classified the images as normal,
abnormal, HGSBO, and LGSBO. Notably, the second FC layer
receives features from the output of the DRP in addition to the
features generated by the first FC layer. Therefore, the second
layer contains rich feature information, including CT depth
information.

Table 1
Performance comparison of the naive method and our method with various backbones.

Backbone Methods Accuracy (%) Specificity (%) Sensitivity (%) AUROC

ResNet Naive 66.15 83.08 66.15 0.848± 0.05
DBA+ DRP 70.26 85.13 70.26 0.876± 0.02

ResNext Naive 68.46 84.23 68.46 0.874± 0.02
DBA+ DRP 66.41 83.21 66.41 0.883± 0.01

WideResNet Naive 65.13 82.56 65.13 0.861± 0.02
DBA+ DRP 72.56 86.28 72.56 0.896± 0.01

DenseNet Naive 75.12 83.83 62.81 0.868± 0.05
DBA+ DRP 72.68 83.28 63.41 0.873± 0.07

EfficientNet Naive 71.22 82.64 60.41 0.841± 0.04
DBA+ DRP 71.71 83.16 63.36 0.868± 0.03

Regardless of the backbone, DBA+ DRP always outperformed the naive approach.
The values were all obtained through fivefold cross-validation.
DBA, dual-branch architecture; DRP, depth retention pooling.

Figure 3. Receiver operating characteristic curve when applying naive and
proposed methods with WideResNet. Solid line and dotted lines are the
receiver operating characteristics of DBA+DRP and Naïve, respectively.
Regardless of each class, the solid line is always above the dotted line. DBA,
dual-branch architecture; DRP, depth retention pooling; HGSBO, high-grade
small bowel obstruction; LGSBO, low-grade small bowel obstruction.
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To clarify DBA and DRP in network architecture, we can say
that DBA is the architectural approach of the multibranch clas-
sifier layer, whereas DRP is the feature pooling approach used to
increase the feature representation power.

Training setup

In the training process, we used a stochastic gradient descent
optimizer with a learning rate of 0.1, a 5e-4 weight decay, and
0.01 learning rate decay using a cosine annealing scheduler for 50
epochs. We also applied gradient clipping and efficient data
augmentation methods, such as flip, gamma, noise, motion, bias
field, random affine, and elastic deformation. The input image

was cropped and padded to 224×224×112 pixels after resam-
pling the voxel space to two. The area under receiver operating
characteristic (AUROC) curve was used as the evaluation metric
in both training and inference. In addition, performance mea-
sures, such as specificity and sensitivity, were also evaluated via
macro reduction, which independently calculates the metric for
each class and then averages the metrics across classes. The code
and models are publicly released at https://github.com/SoongE/
DBADRP_Classifier.

Results

We compared the performance achieved by applying DBA and
DRP using DenseNet121[35], which is frequently used in the
medical domain.We also used EfficientNet-B0[36] and the ResNet
family[30,34,37], which are frequently used as a backbone to
achieve good performance in CNNs.

Performance of ASBO diagnosis

We evaluated the classification performance of the proposed
network for normal, HGSBO, and LGSBO images. Table 1 shows
that the proposed network performed well in terms of accuracy,
specificity, sensitivity, and AUROC. The AUC was 0.896 (95%
CI: 0.895–0.897) for WideResNet, 0.873 (95% CI: 0.866–0.880)
for DenseNet, and 0.873 (95%CI: 0.865–0.871) for EfficientNet.

Table 2
Precision matrix of our proposed methods, WideResNet with
DBA+DRP, for each class from the entire cohort.

Class Accuracy Specifity Sensitivity PPV NPV F1

HGSBO 0.731 0.719 0.754 0.573 0.854 0.651
LGSBO 0.759 0.892 0.492 0.696 0.779 0.577
ASBO 0.962 0.977 0.931 0.953 0.966 0.942

We measured the metrics for each class from the entire cohort. HGSBO and LGSBO in the Class
column indicate the performances of predicting each class on the entire cohort, while ASBO indicates
the performance of predicting HGSBO or LGSBO on the entire cohort, that is, the performance of
distinguishing normal from abnormal on the entire cohort.

Table 3
Robustness to distorted images that occur in the real-world.

Corruption Backbone Methods
Accuracy

(%)
Specificity

(%)
Sensitivity

(%) AUROC

Blur ResNet Naive 67.53 83.66 66.92 0.878
DBA+ DRP 76.62 88.31 76.46 0.891

ResNext Naive 62.34 81.15 62.00 0.826
DBA+ DRP 72.73 86.43 72.72 0.917

WideResNet Naive 66.23 83.01 65.38 0.852
DBA+ DRP 71.43 85.73 71.23 0.873

DenseNet Naive 72.73 86.34 72.72 0.858
DBA+ DRP 64.94 82.42 64.67 0.848

EfficientNet Naive 51.95 75.83 51.49 0.708
DBA+ DRP 51.95 75.87 51.59 0.714

High Contrast ResNet Naive 65.38 82.69 65.38 0.880
DBA+ DRP 78.21 89.10 78.21 0.926

ResNext Naive 73.08 86.54 73.08 0.874
DBA+ DRP 74.36 87.18 74.36 0.855

WideResNet Naive 66.67 83.33 66.67 0.821
DBA+ DRP 70.51 85.26 70.51 0.868

DenseNet Naive 69.23 84.62 69.23 0.848
DBA+ DRP 73.08 86.54 73.08 0.885

EfficientNet Naive 56.41 78.21 56.41 0.585
DBA+ DRP 66.67 83.33 66.67 0.827

Low Contrast ResNet Naive 73.08 86.54 73.08 0.880
DBA+ DRP 80.77 90.38 80.77 0.927

ResNext Naive 74.36 87.18 74.36 0.889
DBA+ DRP 79.49 89.74 79.49 0.919

WideResNet Naive 62.82 81.41 62.82 0.856
DBA+ DRP 75.64 87.82 75.64 0.887

DenseNet Naive 71.79 85.90 71.79 0.890
DBA+ DRP 78.21 89.10 78.21 0.905

EfficientNet Naive 71.79 85.90 71.79 0.896
DBA+ DRP 80.77 90.38 80.77 0.906

For each corruption type and backbone, DBA+ DRP outperformed the naive method.
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The proposed networks use DBA and DRP methods together to
perform better than naive networks with a performance increase
of 0.25 AUROC.

Precise comparison of class-specific performance

Although the AUROC decreased when each proposed method
was used alone, examining this in more detail is necessary. The
measurement of AUROC for each class in the networks indicates
that DRP helps better distinguish each class; however, the overall
performance may appear degraded. Figure 3 shows the ROC
curves of naive and DBA+DRP inWideResNet. Figure 3A shows
that the performance of HGSBO was poor when the threshold
was high, whereas the ROC curve of the DRP+DRP network
Figure 3B shows that HGSBO exhibited high performance even at
a high threshold. Even though the average AUROC of all classes
can be lowered, DRP+DRP better distinguishes features between
classes, as shown in Figure 3B.

We also compared the performance by class in terms of various
metrics. The proposed model predicts normal, HGSBO, LGSBO,
and ASBO classes as a set of HGSBOs and LGSBOs. Table 2
presents the detection performance of three classes using our
model. The detection performance of ASBO was significantly
better than that of the HGSBO and LGSBO classes in terms of all
the metrics.

Robustness to variation in image quality and class
imbalances

We evaluated the performance of the proposed method in real-
world scenarios, which typically includemany variations. Table 3
compares the performance of DBA+DRP and the naive method
in the presence of blur, high contrast, and low contrast corrup-
tion. This experiment was run on only single-fold data and
showed that DBA+DRP outperformed the naive method on all
the metrics and almost all backbones. Table 4 shows the results of
solving the class imbalance problem using data augmentation.
The performance of DBA+DRP improved with augmentation,
which suggests that our method is effective with large amounts
of data.

Resource overhead of the proposed method

We evaluated the proposed method in terms of computational
complexity (i.e. FLOPs), number of parameters, and throughput
by comparing it with the backbone models. Our method had a
relatively minor loss in parameters and throughput but sig-
nificantly improved model performance. As shown in Table 5,
some of the proposed method’s parameters improved and the
throughput was only 0.6% lower. The FLOPs remained almost
constant.

Qualitative result

We visualized gradient-weighted class activation mapping (Grad-
CAM)[38] as a qualitative empirical study. For this visualization, the
feature map was extracted using WideResNet. After collecting five
CT images per patient in each class, we constructed a feature map
with a middle depth to compare the Grad-CAM images. In
Figure 4, the number of titles in each image is the prediction
probability, and true or false indicates whether the prediction is
accurate. Figure 4 shows the Grad-CAM images of the naive model
and our proposed model. The first line of the figures is the

Grad-CAM of the normal data, and the second and third lines are
abnormal values. Figure 4A shows the Grad-CAM of the naive
model, where a heatmap can be observed stamped on a similar part
in all classes; it does not correctly predict HGSBO because the
heatmap is not well captured. However, in Figure 4B, the heatmap
is taken differently for each row, and in one row, that is, in the same
class, a heatmap is taken in a uniform form. From this, we can
conclude that the model reasonably predicts the CT class. Figure 5
shows a generally correct example of model classification in which
both high-grade and low-grade obstacles are classified accordingly.

Discussion

In this study, we developed a novel classifier to identify high-risk
patients with intestinal obstruction and verified its validity
through fivefold cross-validation for a cohort including those who
underwent surgery. In addition, this novel diagnostic tool can
identify patients at risk by classifying them as normal or abnormal
and effectively detect high-risk patients who may require surgery
for ASBO. High-risk patients, such as older, sarcopenic, or dia-
betic patients, are more vulnerable to progressive bowel ischemia
caused by high-grade obstruction, which may cause major mor-
bidities such as AKI, cardiac injury, cardiovascular events, or even
mortality[39,40]. In addition, if appropriately operated in the early

Table 4
Augmentation to deal with class imbalance: performance
improves when augmentation is applied with the backbones
regardless of the methods.

Backbone Methods Augmentation w/o Augmentation

ResNet Naive 0.848 0.823
DBA+ DRP 0.876 0.841

ResNext Naive 0.874 0.831
DBA+ DRP 0.883 0.845

WideResNet Naive 0.861 0.833
DBA+ DRP 0.896 0.839

DenseNet Naive 0.868 0.854
DBA+ DRP 0.873 0.865

EfficientNet Naive 0.841 0.856
DBA+ DRP 0.868 0.859

All experiments were performed using fivefold cross-validation.
DBA, dual-branch architecture; DRP, depth retention pooling.

Table 5
Resource overhead of proposed methods.

Backbone Method
Throughput
(img/s) Param. (M) FLOPs (G)

ResNet Naive 42.65 46.17 220.14
DBA+ DRP 42.43 (−0.2) 48.29 (+2.12) 220.14 (+0)

DenseNet Naïve 28.71 11.24 229.924
DBA+ DRP 28.51 (−0.2) 11.79 (+0.55) 229.928 (+0.004)

EfficientNet Naïve 41.16 4.69 13.985
DBA+ DRP 40.91 (−0.25) 5.53 (+0.84) 13.991 (+0.006)

We report here the throughput, number of parameters, and floating-point operations (FLOPs) of each
backbone when applying DBA and DRP. Throughput refers to the number of images that can be
inferred per second, and parameter means to the size of the model. In general, the more parameters
model has, the slower the speed and the better the performance. FLOPs are the number of floating-
point operations. Operations include root square, log, exponential, and arithmetic, each of which
counts as a single operation.
DBA, dual-branch architecture; DRP, depth retention pooling.
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stages, bowel resection can be avoided. Short bowel syndrome,
which can occur if a large portion of the small bowel is resected,
can also be prevented.

The accuracy of multidetector computed tomography
(MDCT) in predicting SBO varied significantly and ranged from
as low as 65%[41] to as high as 100%. Most studies are based on
small sample sizes and heterogeneous cohorts[42,43]. Thompson
et al.[44] reported an accuracy of 83% for MDCT and Maglinte

et al.[41] reported that MDCT can correctly identify 81% of
HGSBOs and 48% of LGSBOs, and the overall accuracy is 65%.
Ourmodel is highly accurate in detecting SBO in a normal cohort.
Therefore, it can be used as a screening tool for initial assess-
ments. Our model’s overall accuracy is 78%, which is slightly
better than that previously reported. In addition, compared to a
previous machine learning model, our model is satisfactory in
predicting HGSBO[13].

Figure 4. Gradient-weighted class activation mapping (Grad-CAM) for CT in multiple patients. (A) Grad-CAM of naive WideResNet and (B) Grad-CAM of
DBA+DRP. The first row is the normal class, and the second and third are HGSBO and LGSBO, respectively. Figure 4(A) represents the naive model, in which the
heat maps are activated on similar regions across all classes. This indicates that the model fails to accurately classify each individual class. Figure 4(B) illustrates the
DBA+DRP model. In the normal class, the heat maps predominantly show activity in the lower center of the abdomen. However, for the HGSBO class, activity is
concentrated in specific areas of the abdomen. In the case of LGSBO, the heatmap exhibits widespread activity across various regions of the abdomen, implying
that the model distinguishes each class differently. DBA, dual-branch architecture; DRP, depth retention pooling; HGSBO, high-grade small bowel obstruction;
LGSBO, low-grade small bowel obstruction.

LGSBO LGSBO 

HGBSO 

LGSBO 

A

B C D

Figure 5. High-grade small bowel obstruction and low-grade small bowel obstruction (LGSBO) images. (A) a case of high-grade small bowel obstruction that
shows a bird beak sign with each leading point close to the other. (B)–(D) represent LGSBO cases. Both are typical cases of small bowel obstruction and were
correctly classified by our model. Especially, (D) is a case of severe paralytic ileus, and our classifier correctly classified it as LGSBO.
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We demonstrated that the proposed DBA and DRP methods
improve classification performance. In future studies, we will
apply DBA to multiple-branch architectures if diseases are ana-
lyzed hierarchically and several categories can be created.
Furthermore, instead of simply flattening the features after DRP,
we present a research direction to enrich the information by
applying a new feature recalibration method.

However, the following limitations of this study should be
noted. First, because this study was based on data from a single
tertiary center, there could be a potential selection bias or the
patient population could be poorly represented. However, our
dataset contains more than 500 cases and shows a higher class
imbalance, such as variations in BMI or image quality. We
demonstrated this aspect using our model via further analysis, as
detailed in Appendix 3 (Supplemental Digital Content 5, http://
links.lww.com/JS9/B27). Second, all high-grade patients in the
nonsurgical group did not undergo surgery and were diagnosed
only by imaging findings. This could raise the question of whether
the nonsurgical group patients were high-risk. It has been
reported that predicting the high-risk group with only CT scans is
difficult, and interobserver variation among radiologists is also
high[45]. A case in which the distance between two transition
points is less than 8 mm was recently reported as an important
finding. Still, this finding also requires prospective validation, and
19 out of 62 patients showed success in NOM Tx, which could
potentially be false-positive cases[7]. Although the final reports of
the high-grade group included in this study were confirmed by a
radiologist with more than 10 years of experience, there could be
a potential risk of bias and subjective error. In terms of ground
truth, it is necessary to design a prospective study that confirms
high-risk findings, such as strangulation, closed-loop, or band
adhesion by surgery[7–10]. However, we retrospectively identified
ground truths in the surgical records, and Grad-CAM showed
consistent results, supporting our findings. Third, because our
model lacks external validation, our findings are relatively weak
in terms of usability and generalizability. Further prospective
validation or external validation studies are required to confirm
the reliability and generalizability of the proposed classifier. For
external validation, the model weights are available online. (link)
Another limitation is that this classifier was trained to only clas-
sify cases of adhesive SBO and many clinical scenarios of ASBO
were excluded. The reason for excluding these other cases from
the analysis is as follows: First, there are fewer cases compared to
adhesive SBOs. Second, the treatment strategies vary for each
case, such as malignancy, which can potentially degrade the
classifier’s performance. However, if sufficient cases are secured,
hierarchical classification will be possible according to the pro-
posed method. Fourth, because the clinical information of
patients was excluded, and the classification was based only on
CT images, future studies are required to improve performance.
Although the regions activated in Grad-CAM are apparently
activated in the small intestine, a few regions exist that are not[46].
These results are expected to be improved through further
modifications of the model or through segmentation in future
studies. Fifth, overall performance was slightly degraded despite
the better distinction between HGSBO and LGSBO. In future
studies, these issues could be solved with hyperparameter tuning
(e.g. by selecting an appropriate optimizer or learning rate sche-
duler). In addition, we did not perform any tests to determine the
clinical impact of our model. Therefore, before applying this
classifier in clinical settings, further assessments are required, for

example, the potential clinical impact and cost-effectiveness of
implementing the proposed approach in real-world clinical set-
tings should be evaluated. Finally, both accurate readings from an
experienced radiologist and careful clinical consideration by the
clinician in charge of patient care should be prioritized.

Conclusion

This work introduced a significant development in predicting
high-risk patients with ASBO by applying a novel DBA using only
CT images. The AI model efficiently classifies the abnormal group
and guides radiologists and surgeons to identify high-risk patients
requiring surgery. Further prospective validation studies are
required to confirm the efficacy of this model.
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