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AUTHOR'S SUMMARY

A distributed research network refers to a research network wherein multiple institutions 
unite for joint research based on common data model wherein the structure and meaning 
of the data are standardized. Researchers can only send the analysis code to multiple 
institutions and get the summarized analysis results. Thus, researchers cannot see any of 
the individual patient data at any time, and no individual patient data can be leaked from 
the institutions. The Observational Health Data Sciences and Informatics research network 
standardized 928 million unique records or 12% of the world’s population from 41 countries.

ABSTRACT

A retrospective observational study is one of the most widely used research methods in 
medicine. However, evidence postulated from a single data source likely contains biases 
such as selection bias, information bias, and confounding bias. Acquiring enough data 
from multiple institutions is one of the most effective methods to overcome the limitations. 
However, acquiring data from multiple institutions from many countries requires enormous 
effort because of financial, technical, ethical, and legal issues as well as standardization 
of data structure and semantics. The Observational Health Data Sciences and Informatics 
(OHDSI) research network standardized 928 million unique records or 12% of the world’s 
population into a common structure and meaning and established a research network of 453 
data partners from 41 countries around the world. OHDSI is a distributed research network 
wherein researchers do not own or directly share data but only analyzed results. However, 
sharing evidence without sharing data is difficult to understand. In this review, we will look 
at the basic principles of OHDSI, common data model, distributed research networks, and 
some representative studies in the cardiovascular field using the network. This paper also 
briefly introduces a Korean distributed research network named FeederNet.
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INTRODUCTION

The term “big data” was introduced in the 1990s for large data that were difficult to handle 
with general software. In Korea, as the Health Insurance Review and Assessment Service and 
the National Health Insurance Corporation provided national claims data to researchers, the 
concept of medical big data was introduced, and active discussions about its use began. Since 
then, along with the widespread introduction of electronic health records (EHRs), collaborative 
research using large-scale multi-institutional medical data has become a hot topic.

However, sharing patient-level medical data across institutions has been limited largely 
due to the sensitive nature of medical data and lack of interoperability. Although relevant 
laws have been amended and the government has invested considerable resources in data 
standardization and collection, challenges remain (Figure 1). Until recently, most inter-
institutional collaborative studies have been conducted using considerable budget and 
manpower. Meanwhile, a novel paradigm for international collaborative research has been 
proposed: distributed research network (DRN) based on a common data model (CDM).
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Figure 1. Principles of distributed research network and CDM. Sharing data is very difficult due to various technical, 
legal and human issues. In a distributed research network, multiple data sources with different structures and 
semantics are standardized into CDM with same structure and semantics. Researchers can send analysis code in R 
or SQL format to each institution and receive analysis results without sharing individual patient data. 
CDM = common data model.



DISTRIBUTED RESEARCH NETWORK AND 
OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP 
COMMON DATA MODEL

A DRN refers to a research network wherein multiple institutions unite for joint research 
based on CDM. Hospitals and data holding institutions with medical and billing data convert 
data into standardized CDM, and the researcher sends their analysis code in R or SQL format 
to each institution. Since the data is already standardized as observational medical outcomes 
partnership (OMOP) CDM, the analysis code can be operated in multiple institutions without 
additional manual modification, and only the analysis results obtained after executing the 
analysis code are shared (Figure 1). In principle, there is no individual patient data in the 
shared results, and the possibility of re-identification of patients and leakage of personal 
information are fundamentally blocked. Researchers can only send the analysis code 
to multiple institutions and get the summarized analysis results. Thus, during analysis, 
researchers cannot see any of the individual patient data at any time, and no individual 
patient data can be leaked from the institutions.

The OMOP was initiated in 2008 to establish a medical big data network for active medical 
product safety surveillance based on public–private partnership among the U.S. Food and 
Drug Administration, academia, data owners, and pharmaceutical industry.1) OMOP’s 
experiments confirm the feasibility of a DRN for active drug safety, wherein data owners 
have full control over their data.2) OMOP proposed a medical data model, the OMOP CDM, 
to enable standardized analysis based on standardization of data structure and semantics 
across data partners. Following the OMOP project in 2013, the Observational Health Data 
Sciences and Informatics (OHDSI, pronounced “Odyssey”) initiative,3) a multi-stakeholder, 
interdisciplinary, international collaborative, was established as a successor to OMOP. As 
of 2022, OHDSI has attracted 3,266 collaborators from 80 countries 21 time zones and 6 
continents. OHDSI collaborators have 928 million unique records in OMOP CDM format 
from 453 data sources (374 EHRs, 34 registries, and 30 administrative claims) from 41 
countries and covers 12% of the world’s population.4) The mission of OHDSI is “to improve 
health by empowering a community to collaboratively generate the evidence that promotes 
better health decisions and better care.” For this mission, OHDSI generates three categories 
of evidence: 1) characterization; 2) population-level estimation; and 3) patient-level 
prediction. Researchers can use most of characterization, population-level estimation, and 
patient-level prediction functions through a GUI tool called ATLAS. However, for complex 
and advanced analyses, advanced skills are required for various open-source R packages 
provided by the OHDSI method library. Fortunately, various learning opportunities are given. 
Hundreds of YouTube videos on OMOP CDM in various languages are available and can be 
easily found at: http://dash.ohdsi.org/youtube_dashboard/.

FeederNet: AN OBSERVATIONAL MEDICAL OUTCOMES 
PARTNERSHIP COMMON DATA MODEL DATA NETWORK 
IN KOREA

A nationwide DRN in Korea, named “The Federated E-Health Big Data for Evidence 
Renovation Network (FeederNet),” was launched in 2019. The project was carried out from 

855

OMOP CDM and Its Outcomes

https://doi.org/10.4070/kcj.2022.0294https://e-kcj.org

http://dash.ohdsi.org/youtube_dashboard/


2018 to 2020 with a budget of $9.3 million and supported by the Ministry of Trade, Industry 
& Energy of Korea. The follow-up project to expand the data network has been ongoing from 
2019 to 2022 with a budget of $6.2 million. The size of the data network is essential to get a 
network effect or network externality. As of October 2022, 57 Korean tertiary or secondary 
general hospitals joined FeederNet, which contains more than 72% of tertiary teaching 
hospitals in Korea. As a result, data of more than 71 million patients (including duplicates) 
have been converted into OMOP CDM. Of the 57 hospitals that have joined FeederNet, CDMs 
of 46 hospitals have been interfaced with the coordinating system (www.feedernet.com); 
other hospitals are also in the process of connecting or collaborating with the network. 
Additionally, it aims to support collaborative research using the OMOP CDM data network. 
To distribute analytical codes to each hospital and collect their results, a communication 
between the central coordinating center and hospital’s CDM analytical server is mandatory. 
The FeederNet central is a portal that harmonizes distributed joint research and manages the 
resources of the platform. Its features include membership, member/authority management, 
research project creation/management, ATLAS, which is a CDM analytical tool, analytical 
results report/visualization, DB resource monitoring, and dashboard for the status of 
analysis. The FeederNet node is a client module that executes analytical codes from the 
central node to each hospital’s CDM database. Figure 2 shows the FeederNet portal.

In 2019, the “Research Free Zone (RFZ)” was launched to promote inter-institutional joint 
research activities between researchers in the network. The RFZ has 2 mandatory contract 
clauses: 1) the same authority granted to in-hospital researchers is equally granted to 
researchers from other institutions in the RFZ; and 2) a single IRB granted to a researcher is 
effective to all hospitals in the RFZ. Currently, 24 hospitals have joined the RFZ, and about 
90% of analyses were conducted using the CDM databases in RFZ.
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Figure 2. FeederNet main page: www.feedernet.com. 
CDM = common data model.

http://www.feedernet.com
http://www.feedernet.com


From the launch of FeederNet on May 2019 until September 2022, 12,501 analyses have been 
performed. Additionally, approximately 400 analyses/month have been conducted since June 
2020, and more than 4,700 analyses were performed in 2021 (Figure 3).

Publications by Korean researchers that have used the OMOP CDM have increased every 
year. The authors searched a list of studies from Google Scholar using the keyword “OMOP 
CDM” and selected studies that were published in scientific peer-reviewed journals wherein 
the first author is a Korean researcher. Subsequently, we found 116 papers; 4, 21 and 55 
papers were published in 2019, 2020, and 2021, respectively, which shows a promising 
increasing trend (Figure 4). The OHDSI provides a searching and browsing tool for OHDSI 
publications and education materials, named “OHDSI Community Dashboard,” which is 
available at: http://dash.ohdsi.org/.
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Figure 3. Cumulative number of analyses using FeederNet.
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STANDARDIZATION, DATA QUALITY AND RISK OF RE-
IDENTIFICATION OF COMMON DATA MODEL DATABASE
Data standards can ultimately be reduced to structure and semantics.5) In many cases, the 
importance of semantics, or ontology is underestimated.

Currently, the Korean Standard Classification of Diseases (KCD) 7 and Electronic Data 
Interchange (EDI) vocabulary systems have been incorporated into the OMOP vocabulary 
system. In the previous study, it was found that the integration of the EDI vocabulary into the 
OMOP vocabulary facilitates the standardization of EDI vocabulary per se.6)

Most standardized data in the DRN originated from systems, including health insurance 
claim data, EHR, and pharmacy dispensing data. The term “extract, transform, and load 
(ETL)” is often used to refer to data conversion from one source to another data format such 
as OMOP CDM. In Korea, Ajou University was the first hospital to develop an OMOP CDM 
database based on EHR, with the detailed process for data conversion and standardization 
having been published.7) The term “vocabulary mapping” is used to refer to the translation of 
medical terminology from the original source data into the OMOP standard vocabulary.

Most concerns about data quality in the DRN are focused on data conversion errors in ETL 
and semantic errors in vocabulary mapping when standardizing semantics into the medical 
vocabulary. Furthermore, there is a third type of error (source data error), which already 
exists in the source data. Although source data may have their own data quality screening 
policy, few of their processes and results of data quality screening are made public. Ironically, 
more attention has focused on data conversion and semantic errors due to the lack of 
availability in the results for data quality from the source data.

As a DRN, OHDSI has given the responsibility of ensuring the quality of source data to 
the individual data owners. Recently, Blacketer et al. developed the R package, named 
“Data Quality Dashboard (DQD)”, to evaluate the data quality of an OMOP CDM database 
according to Kahn’s data quality framework. Kahn’s framework is defined by three categories 
(conformance, completeness, and plausibility) and 2 data quality assessment contexts 
(verification and validation). Currently, OHDSI recommends using DQD to evaluate the data 
quality of CDM data.8)

CHARACTERIZATION

OHDSI provides a useful GUI tool called ATLAS. One of the main functions of ATLAS is the 
characterization of CDM data. Characterizing a population using descriptive statistics is an 
important first step in generating hypotheses about determinants of health and disease. The 
ATLAS provides four functions on characterization: database-level characterization, cohort 
characterization, treatment pathways, and incidence rates. Database-level characterization 
provides aggregated summary statistics to understand the data profile of the entire 
database. Cohort characterization describes aggregate summary statistics of the cohort of 
interest. Treatment pathway describes the sequence of interventions a person received over 
a period. Incidence measures the outcome rate of an outcome in a population during the 
time at risk.7)
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An internationally collaborative study of OHDSI characterized diversity in treatment 
pathways of type 2 diabetes mellitus, hypertension, and depression across 11 data sources 
from EHRs and administrative claims data on 250 million patients from four countries, 
including Japan, South Korea, UK, and USA. The characterization study stated that the 
world is moving toward more consistent therapy over time across diseases and locations, but 
significant heterogeneity remains between sources.9)

Kostka et al.10) conducted a large-scale descriptive characterization study of 4.5 million 
coronavirus disease 2019 (COVID-19) cases using a federated network of CDM data 
partners in the USA, Europe (the Netherlands, Spain, the United Kingdom, Germany, 
France, and Italy), and Asia (South Korea and China). They noted similarities between 
the USA and Europe, but South Korea differed, with more women hospitalized than men. 
Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease, 
and heart disease, and common presenting symptoms were dyspnea, cough, and fever. By 
characterizing baseline variability in patients and geography, they could provide critical 
context that might otherwise be misconstrued as data quality issues.

Brat et al.11) formed an international consortium (“4CE”) of 96 hospitals across 5 countries 
to address critical clinical and epidemiological questions about COVID-19. They utilized the 
“Informatics for Integrating Biology and the Bedside (i2b2)” or OMOP platforms to map a 
CDM. They focused on temporal changes in key laboratory test values and found hospital-level 
differences as well as country-level variation in the consortium. They proposed a framework to 
capture the trajectory of COVID-19 disease in patients and their response to interventions.

POPULATION-LEVEL ESTIMATION

A population-level effect estimate represents an estimate of the average causal effect 
of exposure to a particular health outcome. The first OHDSI study of population-level 
estimation for hypertension reported comparable effectiveness among three popular 
first-line dual combinations of antihypertensive medications in 5 databases across Korea 
and USA.12) Suchard et al.13) compared the comparative effectiveness and safety of first-line 
antihypertensive drug classes, including thiazide or thiazide-like diuretics, angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium 
channel blockers, and non-dihydropyridine calcium channel blockers. The authors 
performed a systematic large-scale study under a new-user cohort design to estimate the 
relative risks of three primary outcomes (acute myocardial infarction, hospitalization for 
heart failure, and stroke), 6 secondary outcomes, and 46 safety outcomes comparing all 
first-line classes across a global network of 6 administrative claims and 3 EHR databases 
containing data of 4.9 million patients in OMOP CDM format. They generated 22,000 
calibrated and propensity score-adjusted hazard ratios comparing all classes and outcomes 
across databases. In this study, researchers proposed the creation of a research framework, 
named “large-scale evidence generation across a network of databases (LEGEND)”.13) The 
LEGEND was initiated to avoid the shortcomings of observational studies, including residual 
confounding, P hacking, and publication bias. To establish a new paradigm for producing 
trustworthy evidence through observational studies, the LEGEND specified 10 criteria14):

1. LEGEND will generate evidence at a large-scale.
2. Dissemination of the evidence will not depend on the estimated effects.
3. LEGEND will generate evidence using prespecified analysis design.
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4. �LEGEND will generate evidence by consistently applying a systematic process across all 
research questions.

5. LEGEND will generate evidence using best practice.
6. LEGEND will include empirical evaluation through the use of control questions.
7. LEGEND will generate evidence using open-source software that is freely available to all.
8. LEGEND will not be used to evaluate new methods.
9. LEGEND will generate evidence across a network of multiple databases.
10. �LEGEND will maintain data confidentiality; patient-level data will not be shared 

between sites in the network.

You et al.15) leveraged the LEGEND principles to assess the comparative effectiveness of 
acute myocardial infarction, stroke, and hospitalization for heart failure and safety of beta-
blockers as first-line treatment for hypertension across three databases (2 administrative 
claim databases and 1 EHR-based database from 2001 to 2018) in the USA. The study found 
that many patients received first-line beta-blocker monotherapy for hypertension, and 
that the effectiveness and safety of atenolol versus third-generation beta-blockers were not 
significantly different. However, patients on third-generation beta-blockers had a higher risk 
of stroke than those on angiotensin-converting enzyme inhibitors and thiazide diuretics.

You et al.16) also assessed the association of ticagrelor versus clopidogrel with ischemic and 
hemorrhagic events in patients undergoing percutaneous coronary intervention (PCI) for 
acute coronary syndrome in clinical practice using two USA-based EHR databases and one 
nationwide South Korean database in OMOP CDM format. The primary endpoint was net 
adverse clinical events (NACE) at 12 months, and secondary endpoints included NACE or 
mortality, all-cause mortality, ischemic events, hemorrhagic events, individual components 
of the primary outcome, and dyspnea at 12 months. The study found that among patients with 
acute coronary syndrome who underwent PCI as routine clinical practice, the risk of NACE 
at 12 months was not significantly different between ticagrelor and clopidogrel. They tried 
to overcome the weakness of an observational study by adopting the LEGEND principles, 
including pre-specification of a statistical analytic plan, use of an active comparator, new-user 
cohort design, use of three large databases from the USA and Korea, creation of large-scale 
propensity score model, enrollment of 96 negative controls (falsification endpoint), and 
conduction of a large set of sensitivity analyses (144 analyses for one outcome).

PATIENT-LEVEL PREDICTION

Patient-level prediction is an essential package of ATLAS for building and validating machine 
learning models to predict diagnostic or prognostic outcomes, such as disease onset and 
progression, treatment choice, treatment response, treatment strategy, and treatment 
adherence, using clinical data in the OMOP CDM.17) The patient-level prediction package 
supports various machine learning algorithms, including regularized logistic regression, 
random forest, gradient boosting machines, decision tree, naive Bayes, K-nearest neighbor, 
neural network and deep learning (convolutional neural networks, recurrent neural network and 
deep nets), and custom algorithms. Compared to population-level estimation, the literature on 
predictive models using OMOP CDM is rare but is expected to increase in the future.

Although DRNs showed feasibility in epidemiologic studies, it is difficult to utilize its 
advantages in developing a patient-level prediction model using machine learning algorithms 
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because the classical machine learning algorithm requires data centralization. Recently, a 
novel paradigm, named federated learning (FL), has recently been introduced and used in 
various medical research.18),19) However, one of the major obstacles of FL is the absence of 
a standardized data pipeline. Currently, local research collaborators had to create feature 
extraction codes and conduct the extraction themselves, which makes the data-driven 
approach impossible and causes data quality instability and poor transparency. It is well-
known that even a few numbers of improper data can greatly harm the overall model 
performance, especially in FL.20) OMOP CDM can be a solution for standardizing the feature 
extraction process while assuring feature quality.21) ATLAS can improve code production, and 
a pre-established OMOP CDM network, such as FeederNet, can solve the problem of network 
connection, which is another major problem of FL.20)

A risk prediction model for COVID-19 was developed as an effort to screen high-risk 
populations for COVID-19 infection by using EHR data from 7,262 patients who were 
evaluated and/or tested for COVID-19 between January and June 2020.22) Moreover, a 
prediction model of major depressive disorder to bipolar disorder conversion was developed 
using five US databases and externally validated using nine clinical databases within the 
OHDSI network. The model’s area under the curve (AUC) varied across the 5 USA training 
databases (0.633–0.745) and across the nine external databases from USA, Korea, Germany, 
France, Belgium, and Japan (0.570–0.785).23) Furthermore, a fall risk prediction model using 
nursing notes, fall risk assessment sheets, patient acuity assessment sheets, and clinical 
observation sheets was developed. For the study, the authors converted 6,277 nursing 
statements, 747,049,486 clinical observation sheets, 1,554,775 fall risk scores, and 5,685,011 
patient acuity scores into OMOP CDM. Although the AUC varied (0.692–0.726), it was better 
than the Hendrich II Fall Risk Model. It is notable that the authors standardized and utilized 
relatively unstructured nursing records.24)

AGGREGATE DATA META-ANALYSIS VERSUS INDIVIDUAL 
PARTICIPANT DATA META-ANALYSIS (POOLED 
ANALYSIS)

In the DRN, most studies are conducted without pooling patient-level data in the research 
network. Rather, analysis results without patient-level data from the identical study protocol 
and analysis code are pooled for meta-analysis.

Meta-analysis using individual patient-level data or individual participant data (IPD) meta-
analysis (pooled analysis) requires obtaining individual patient data from published and 
unpublished studies, which is preferred over aggregate data meta-analysis.25) The reasons 
for this preference include potentials to address consistent inclusion and exclusion criteria, 
missing data, presence of results from unpublished studies, standardized statistical 
analysis, and uniform model assumptions across studies. However, pooled analysis takes 
longer to complete, costs significantly more, and faces more challenges in obtaining data 
than aggregate data meta-analyses.26) Most of the advantages of pooled analysis are also 
guaranteed in a DRN study without pooling patient-level data because sharing an end-to-
end analytical study package in a DRN study also ensures consistent inclusion and exclusion 
criteria across the sites, addresses missing data, and includes results from unpublished 
studies. A meta-analysis in the DRN study can be equivalent to the 2-stage IPD meta-analysis, 
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which derives aggregate data in each study separately then combines these in a traditional 
meta-analysis model. A previous empirical study showed that the results from 1- and 2-stage 
approaches were similar.27)

Nonetheless, the 2-stage method misleads the results when the number of outcomes is too 
small. Additionally, the two-stage method assumes that study treatment effect estimates have 
a normal sampling distribution and that their variances are known. Since this assumption 
is based on the central limit theorem, this method depends on the combination of the 
total number of participants, number of participants in target and comparator groups, and 
number of events/non-events in each group in each result. Therefore, these assumptions 
are unlikely to be appropriate when some or many of the included results are small (<30 
participants), and it is even more unreliable for binary and time-to-event outcomes as the 
study-specific estimates and their variance are derived from the number of outcomes (non-
outcomes) derives and not just the total participants.28) Therefore, Schuemie et al.29) proposed 
a non-normal approximation meta-analysis to yield a closer likelihood to the true value (from 
a one-stage pooled analysis) for Cox regression.

FUTURE PERSPECTIVES

Unstructured medical data, such as radiology images, bio-signals, and medical notes (free 
text), are essential for in-depth CDM analysis research. During the FeederNet project, they 
developed seven CDM extension data models for unstructured or semi-structured medical 
data, including genomics, radiology, lifelog data, vital signs, national emergency registry, 
geographic data, and medical notes. Conversion of free text in clinical notes or clinical 
reports into structured data will be necessary. Transferred learning, such as BERT or GPT-3, 
is a promising artificial intelligence tool for natural language processing to handle free text.

Despite the suite of diagnostics, the innate limitation for unconfoundedness cannot be 
ignored in an observational study. Furthermore, there are several questions that cannot 
be answered by an observational study because of a lack of equipoise in clinical practice. 
Pragmatic clinical trials based on nationwide CDM networks may provide an alternative. A 
pragmatic clinical trial (PCT) can inform a clinical or policy decision by providing evidence 
for adopting the intervention into real world clinical practice.30) To enable a PCT on the 
CDM network, data generated during treatment needs to be directly reflected in the CDM. 
Although the CDM does not update the EHR or claim data in real-time, it periodically 
provides updates. However, since many of the organizations connected to FeederNet update 
data daily, weekly, or monthly, the CDMs in Korea can be used for a PCT in the future.

CONCLUSION

Although the growing OMOP CDM network enables researchers to access data from tens 
or hundreds of millions of people across the world beyond current regulations, it should 
be noted that OMOP CDM itself is one of the proposed data standardization frames. Data 
standardization in healthcare is a daunting challenge that inevitably entails a trade-off 
between interoperability and data loss. Constant contribution and open collaboration may 
induce the evolution of this novel paradigm. Furthermore, rather than becoming obsessed 
with using this invaluable data network to publish in high-impact journals, researchers 
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should constantly strive to generate reliable and transparent evidence and ways to contribute 
to the network.
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