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Substantial progress has been made in identification of type 2
diabetes (T2D) risk loci in the past few years, but our un-
derstanding of the genetic basis of T2D in ethnically diverse
populations remains limited. We performed a genome-wide
association study and a replication study in Chinese Hans
comprising 8,569 T2D case subjects and 8,923 control subjects
in total, from which 10 single nucleotide polymorphisms were
selected for further follow-up in a de novo replication sample of
3,410 T2D case and 3,412 control subjects and an in silico
replication sample of 6,952 T2D case and 11,865 control subjects.
Besides confirming seven established T2D loci (CDKAL1,
CDKN2A/B, KCNQ1, CDC123, GLIS3, HNF1B, and DUSP9) at
genome-wide significance, we identified two novel T2D loci,
including G-protein–coupled receptor kinase 5 (GRK5)
(rs10886471: P = 7.1 3 1029) and RASGRP1 (rs7403531: P = 3.9 3
1029), of which the association signal at GRK5 seems to be spe-
cific to East Asians. In nondiabetic individuals, the T2D risk-in-
creasing allele of RASGRP1-rs7403531 was also associated with
higher HbA1c and lower homeostasis model assessment of b-cell
function (P = 0.03 and 0.0209, respectively), whereas the T2D
risk-increasing allele of GRK5-rs10886471 was also associated
with higher fasting insulin (P = 0.0169) but not with fasting glu-
cose. Our findings not only provide new insights into the patho-
physiology of T2D, but may also shed light on the ethnic
differences in T2D susceptibility. Diabetes 62:291–298, 2013

T
he prevalence of type 2 diabetes (T2D) has in-
creased dramatically in China during the past few
decades (1), and currently .92 million Chinese
adults are estimated to have T2D (2). Although

nutritional transition, lifestyle changes, and increasing
obesity prevalence are important risk factors driving the
epidemic in China, genetic factors also play a major role in
T2D susceptibility (3,4). Genome-wide association studies
(GWAS) have identified .50 T2D susceptibility loci, pre-
dominantly in populations of European ancestry, but also in
East and South Asians (5). Risk variants at these loci are
generally of modest effect and altogether explain only 10–
15% of the heritability of T2D (6). East Asians, including
Chinese, have been shown to be genetically more suscep-
tible to developing T2D than Western populations (7,8), but
the genetic mechanism underlying this ethnic difference
remains poorly understood (9). Although at least 14 T2D
loci have been identified through GWAS in East Asian
populations (5,10–12), these loci are not sufficient to ex-
plain the ethnic difference in T2D susceptibility. Moreover,
some of these loci remain to be validated in additional in-
dependent cohorts. In this study, we describe a three-stage
GWAS of T2D in Chinese Hans that aims to identify addi-
tional T2D susceptibility loci (Fig. 1).
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RESEARCH DESIGN AND METHODS

Participants. We performed a three-stage GWAS in multiple independent
sample sets. The stage 1 samples for the GWA scan included 1,999 T2D case
subjects and 1,976 nondiabetic control subjects drawn from the Nutrition and
Health of Aging Population in China (NHAPC) study (312 case and 815 control
subjects), the Gut Microbiota and Obesity Study (GMOS) (82 case and 163
control subjects), the Fudan-Huashan Study (807 case and 339 control sub-
jects), and the Beijing Diabetes Survey (798 case and 659 control subjects). The
stage 2 samples for replication testing of 96 single nucleotide polymorphisms
(SNPs) consisted of 13,517 unrelated Chinese Hans (6,570 T2D case and 6,947
nondiabetic control subjects) from the Guizhou-Bijie Type 2 Diabetes Study
(GBTDS), the Beijing Type 2 Diabetes Studies (BTDS), and the Hubei Type 2
Diabetes Studies (HTDS). The stage 3 replication testing of 10 SNPs is carried
out by de novo genotyping in 3,410 T2D patients and 3,412 nondiabetic control
subjects from the Shanghai Diabetes Inpatient Database (SDIID) and the
Shanghai Diabetes Study (SDS) and in silico replication in the AGEN-T2D
GWAS datasets (6,952 T2D case and 11,865 control subjects). There was no
overlap of participants among stage 1, 2, and 3 samples. Studies of T2D-related
quantitative traits were performed among 3,614 participants from the NHAPC
and GMOS, the two population-based studies. All studies were approved by
local ethics committees of each participating institution, and informed written
consent was obtained from all participants. A summary of the contributing
studies, criteria for T2D case and nondiabetic control subjects in each study,
and sample characteristics can be found in the Supplementary Materials and
Methods and Supplementary Table 1.
Genotyping and quality control. The stage 1 DNA samples were genotyped
using the Illumina Human660W-Quad BeadChip (Illumina, Inc., San Diego, CA).
Quality control (QC) filters were applied at the individual and SNP levels. At the
individual level, we removed the samples that met any of the following criteria: 1)
call rates ,97% (n = 20); 2) with excessive heterozygosity; 3) with sex mis-
matches between the reported and genetically inferred (n = 69); and 4) with
unexpected duplicates (n = 19) or cryptic relatives (n = 149). We also removed
population outliers (n = 6) detected by using principle component analysis (13)
(Supplementary Fig. 1). At the SNP level, we excluded the copy number
variation–related SNPs, the SNPs in Y and mitochondrial chromosomes, and
the SNPs if they had: 1) call rate ,95% (n = 1,351); 2) minor allele frequency
,0–5% (n = 63,263); and 3) Hardy-Weinberg equilibrium (HWE) P , 1026 in
control groups (n = 1,047). The samples that passed all QC criteria were then

used to impute for the ungenotyped or missing SNPs from the phase 2 HapMap
CHB+JPT (release number 22) reference panel using IMPUTE (version 2.1.2;
http://mathgen.stats.ox.ac.uk/impute/impute.html) software (14). We removed
all imputed SNPs with an estimated call rate ,99%, minor allele frequency
,1%, HWE P , 1026, or the info measure #0.5.

For stage 2 replication, we genotyped 96 SNPs selected from stage 1 in three
independent Chinese Han populations with 6,570 T2D case subjects and 6,947
control subjects from the GBTDS, BTDS, and HTDS studies using TaqMan SNP
Genotyping Assays (Applied Biosystems, Foster City, CA) in the Fludigm EP1
platform. We excluded the samples with call rate ,93% and the SNPs with call
rate ,95% or deviation from HWE at P , 5.2 3 1024 (Bonferroni corrected P
value for 96 tests) in control groups. The overall call rates were 99.7, 99.4, and
99.4% for samples from the GBTDS, BTDS, and HTDS studies, respectively. We
genotyped .5% duplicate samples for each study to assess genotyping re-
producibility, and the concordance rates were 99.9% for 189 duplicate samples
from the GBTDS and 99.5% for 387 duplicate samples from BTDS and for 166
duplicate samples from HTDS. We also performed cross-platform validation by
genotyping the 96 SNPs in 135 stage 1 samples that had been run on the
Illumina assay using TaqMan SNP Genotyping Assays in Fludigm EP1 plat-
form, and the concordance rate was 99.9%.

Finally, 10 SNPs, selected based on results of meta-analysis that combined
stage 1 and 2 data, were used for stage 3 replication, including a de novo
genotyping in 3,410 T2D case and 3,412 control subjects from the SDIID/SDS
study and an in silico replication in 8 independent GWAS datasets of 6,952 case
and 11,865 control subjects from the AGEN Consortium. The de novo geno-
typing was performed using Sequenom MassARRAY (Sequenom, San Diego,
CA) in the SDIID/SDS study. After quality control, 3,257 T2D case and 3,262
control subjects with genotyping call rate .90% were used for association
analyses. The concordant rates were .99% for all tested SNPs in 232 dupli-
cated samples. The in silico replication results were obtained by directly
searching the meta-analysis results of 8 independent GWAS datasets with
6,952 case and 11,865 control subjects in total that participated in the dis-
covery stage of the AGEN-T2D Consortium.
Statistical analysis. For stage 1 GWAS, the genotyped SNPs (495,686) and
imputed SNPs (1,738,508) were tested for their associations with T2D using
PLINK (version 1.07; http://pngu.mgh.harvard.edu/~purcell/plink/) (15), and
SNPTEST (version 2.2.0; https://mathgen.stats.ox.ac.uk/genetics_software/
snptest/snptest.html) (14), respectively. The odds ratios (ORs) and 95% CIs

FIG. 1. Summary of study design.
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were estimated by logistic regression under an additive genetic model, ad-
justing for age, sex, and the first two principal components in model 1. BMI
was further included as a covariate in model 2. For the X-chromosome SNPs,
males were treated as homozygotes, in that genotypes were coded as 2 for the
coded allele (16). The initial association analyses were performed by pooling
the data from the Beijing and Shanghai participants and then stratified by
geographical regions (Beijing and Shanghai) to test whether the pooling would
introduce a bias due to potential population stratification. The P values were
adjusted for genomic control inflation factor (lGC). To find more consistent
evidence for associations between each SNPs and T2D, we further stratified
the association analyses by sex or tested the associations between the case
subjects with family history and the nondiabetic control subjects.

The SNP selection for stage 2 replication was largely based on the P values
in the discovery stage, and one or two SNPs with the smallest P values were
chosen for each significant genomic region, defined as that contained a set of
SNPs in linkage disequilibrium (LD) at r2 $ 0.1 with the most associated SNP.

For stage 2 and 3 replication analyses, logistic regression analysis was
applied to test association of each SNP with T2D, assuming an additive genetic
effect and adjusting for age and sex. The association analyses were performed
separately in each study. The effect sizes across studies or stages were
combined using fixed-effect inverse variance weighted meta-analysis, and the
P values were calculated using a fixed effects meta-analysis with sample size
weighted Z-score. The heterogeneity across studies was assessed using Cochran
Q statistics (17).

We also examined the effect of T2D-associated SNPs on T2D-related
quantitative traits in participants from the NHAPC and GMOS studies, of which
the individuals receiving glucose-lowering treatment and GMOS participants
with BMI $28 were excluded from analyses (Supplementary Table 10). The
NHAPC samples were genotyped using the Illumina Human660W-Quad
BeadChip (Illumina, Inc.) using the stage 1 QC criteria, and the GMOS samples
were genotyped using TaqMan SNP Genotyping Assays in Fludigm EP1 plat-
form. Finally, a total of 3,614 samples (2,229 from Shanghai and 1,385 from
Beijing) that passed all QC criteria were used for the association analyses,
which were performed in the Shanghai and Beijing samples separately using
linear regression analysis assuming an additive genetic model, adjusting for
age, sex, and study covariates (NHAPC and GMOS for the Shanghai samples
only). Values of insulin and homeostasis model assessment of b-cell function
(HOMA-B) and insulin sensitivity (HOMA-S) were natural log-transformed
before analysis, and results of each study were combined by fixed-effect in-
verse variance weighted meta-analysis. HOMA-S and HOMA-B were estimated
by the HOMA model using Levy’s computer model (18).
cis-eQTL and peripheral blood mRNA expression analyses. For cis-eQTL
analysis, we first searched rs10814916, rs10886471, rs7403531, and their
proxy SNPs (r2 . 0.5) in the Genevar eQTL database, including 166 adipose
tissues, 156 lymphoblastoid cell lines, and 160 skin tissues derived from
a subset of healthy female twins of the MuTHER resource (19). Associations
between each SNP and mRNA expression level of nearby genes were obtained
by using Spearman rank correlation for ,10,000 permutations as the default
settings of Genevar (version 3.1.1; http://www.sanger.ac.uk/resources/software/
genevar/).

We performed GKR5 mRNA expression analysis in blood samples of 64
unrelated Chinese Hans recruited from the Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences, in December 2011. All par-
ticipants provided written informed consent, and study protocol was approved
by the local ethics committee. Genomic DNA and RNA samples were extracted
from peripheral blood by using a Qiagen kit (Qiagen) and RNA Pure Blood kit

(CoWin Biotech Co.), respectively. The genotype of G-protein–coupled receptor
(GPCR) kinase 5 (GRK5)-rs10886471 was determined by sequencing, using
the following primers: 59-TCCTACACTGGAACAAGCC-39 and 59-ACGGACTA-
ATACAGACGGG-39. Quantitative real-time RT-PCR for GRK5-rs10886471 was
performed using the GoldStar TaqMan Mixture kit (CoWin Biotech Co.) on
a Bio-Rad IQ5 system (Bio-Rad). GRK5 mRNA levels were normalized to the
relative expression level of GAPDH. We carried out statistical analysis for ex-
pression data using linear regressions and an unpaired Student t test. P value
from linear regression was calculated by assuming a dominant genetic effect of
minor allele of rs10886471 and adjusted for the status of T2D. The one-tail
P value is reported in the text.
Comparison of regional LD patterns. The genomic regions for the GRK5
and RASGRP1 loci were selected based on their regional LD plots (Supple-
mentary Figs. 6 and 7). The varLD algorithm is used to compare difference in
the regional LD patterns among phase 2 HapMap CHB samples (45 Chinese
Hans), CEU samples (60 white Europeans), and JPT samples (45 Japanese),
and results were presented as Monte Carlo P values (20).

RESULTS

In stage 1, we tested the association with T2D of 2,234,194
genotyped and imputed SNPs that passed all QC criteria in
3,712 Chinese Hans from Beijing and Shanghai, of which
1,839 were case subjects, and 1,873 were control subjects.
No significant population stratification was observed be-
tween case and control subjects using principle component
analysis (Supplementary Fig. 2), and the genomic control
factor was also quite close to 1.0 (l = 1.03), suggesting there
is no genome-wide inflation due to population stratification
for stage 1 samples. The quantile–quantile plot showed
substantial deviation from the expected at the lower
P values, suggesting that some associations were more
significant than expected by chance (Supplementary Fig.
3). SNPs in four previously reported T2D loci (CDKAL1,
CDKN2A/B, KCNQ1, and DUSP9) reached genome-wide
significance (P, 5 3 1028) (Fig. 2 and Supplementary Fig.
4), with directional consistency as previously reported
(21–25). For the other previously reported T2D loci, apart
from three loci that were monomorphic in Chinese Hans,
48 of 51 loci showed directionally consistent association
with T2D (binomial test, P = 9.8 3 10212), of which 19
were associated with T2D at P , 0.05 (Supplementary
Table 3). Of these, only the rs7754840 in CDKAL1 showed
a significantly larger effect on T2D in Chinese Hans than in
white Europeans (P for heterogeneity = 3.33 3 1024),
consistent with our previous findings (26).

For follow-up, we chose one or two SNPs per locus that
had the smallest P values in stage 1, except for the two
strongest association signals at CDKAL1 and KCNQ1 (P #
4.24 3 10210, OR = 1.37), for which association with T2D
has been repeatedly confirmed in East Asian populations.

FIG. 2. Manhattan plot for genome-wide association analysis of 495,686 genotyped SNPs in stage 1. The2log10 P values were from pooled analysis,
adjusting for age, sex, and the first two principle components. The red dots at each locus indicate the signals with P < 10

26
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As such, the 96 most significant SNPs representing 84 in-
dependent loci were selected for stage 2 replication
(Supplementary Tables 2 and 4), which consisted of de
novo genotyping of the SNPs in three independent Chinese
Han populations with 6,570 T2D case and 6,947 control
subjects (Supplementary Materials and Methods and Sup-
plementary Table 1). All SNPs, except for SLC30A8-
rs13266634 that showed significant deviation from HWE,
passed the QC criteria and were included in the replication
analyses. A total of eight SNPs in or near RASGRP1,
GLIS3, CDKN2B, CDC123, HHEX, HNF1B, FAM58A, and
DUSP9 were significantly associated with T2D after Bon-
ferroni correction for multiple tests in the stage 2 samples,
and the P value cutoff for Bonferroni correction was
5.26 3 1024 (0.05/95) (Supplementary Table 5). In meta-
analyses combining stage 1 and 2 data, the SNPs in or near
RASGRP1, CDKN2B, CDC123, HHEX, HNF1B, FAM58A,
and DUSP9 reached the genome-wide significance (Sup-
plementary Table 5), of which CDKN2B (24,25,27), HHEX
(24,25,27), CDC123 (28), HNF1B (29), and DUSP9 (29) are
established T2D loci. rs10814916 (P = 5.29 3 1027) at
GLIS3 and rs10886471 (P = 5.92 3 1027) at GRK5 were
close to the genome-wide significance threshold (Supple-
mentary Table 5). The association between GLIS3 variant
(rs7034200) and T2D risk had been observed in a previous
candidate gene association study (30), but the evidence
was inconclusive. The SNP rs12010175 in FAM58A is in
modest LD with rs5945326 near DUSP9 (r2 = 0.35). Con-
ditional analyses by including the two SNPs in one logistic
regression model revealed that these two SNPs represent
the same locus (P adjusted for rs5945326 = 0.02).

Apart from the SNPs that represent previously estab-
lished T2D loci, 10 SNPs (each representing independent
loci) showed association with T2D at P , 5 3 1024 in
a meta-analysis that combined stage 1 and 2 data, and no
additional novel signal (P , 5 3 1024) was observed when
the association analyses were stratified by sex (Supple-
mentary Table 6). These 10 SNPs were taken forward for
replication in stage 3, which included a de novo genotyp-
ing replication in 3,410 T2D case and 3,412 control sub-
jects of Chinese Hans and an in silico replication in
a previously published meta-analysis of GWAS of 6,952
T2D case and 11,865 control subjects (including 4,026 case
and 4,654 control subjects from Chinese Hans and the
remaining 2,926 case and 7,211 control subjects from Ko-
rean, Japanese, Malay, and Filipino populations) of the
AGEN-T2D Consortium (5). A total of three SNPs at
GLIS3, GRK5, and RASGRP1, respectively, exceeded the
genome-wide significance threshold (combined P values:
7.1 3 1029 to 6.0 3 10212; OR: 1.10–1.12) when we com-
bined the data across all three stages (Table 1 and Supple-
mentary Table 7). We found no evidence of heterogeneity
for the associations at these three loci across all study
populations (P for heterogeneity $ 0.26) or between Chi-
nese Hans and other East Asians (P for heterogeneity
$ 0.14) (Supplementary Table 8). While our in silico rep-
lication was ongoing, GLIS3 was reported as a T2D locus
by the AGEN-T2D Consortium (5). The association signal
(rs10814916) at GLIS3 in our study is in high LD (r2 = 0.93)
with the SNP (rs7041847) identified in the AGEN-T2D meta-
analysis. As such, we only consider GRK5 and RASGRP1 as
the novel T2D loci identified by our study.

The association between RASGRP1-rs7403531 and T2D
was confirmed by results from DIAGRAM plus GWAS meta-
analysis (22) (8,130 T2D case and 38,987 control subjects of
European origin), with comparable effect size and consistent

direction (P = 0.023; OR = 1.06; P for heterogeneity be-
tween East Asians and Europeans = 0.22), and two im-
puted SNPs (rs8043085 and rs12593201, r2 $ 0.8 with
rs7403531) at this locus even showed a stronger associa-
tion (P # 3.82 3 1023; OR = 1.07) in European populations
from the DIAGRAM Consortium (Supplementary Tables 8
and 13). However, the T2D association for the GRK5 locus
was not replicated in the DIAGRAM plus GWAS datasets
(rs10886471: P = 0.352, OR = 0.98; P for heterogeneity
between East Asians and Europeans = 4.42 3 1026)
(Supplementary Tables 8 and 13).

To examine whether adiposity was a potential mediator
in the association of the two novel loci and T2D, we tested
the association with further adjustment for BMI in pop-
ulations across all stages. The effect sizes for each SNP
remained largely unchanged (P adjusted for BMI = 1.73 3
1028 to 2.87 3 1029; OR = 1.10–1.12) (Supplementary Ta-
ble 9), suggesting that their associations with T2D were
not mediated through adiposity. We further examined
associations for T2D-related quantitative traits in 3,614
participants (normal fasting glucose: 2,142; impaired fast-
ing glucose: 1,211; and T2D: 261) from the NHAPC and the
GMOS studies, two population-based studies of Chinese
Hans. Risk allele of the GRK5-rs10886471 was also asso-
ciated with higher fasting plasma insulin levels (P =
0.0204), but not with fasting plasma glucose, whereas risk
allele of the RASGRP1-rs7403531 was also significantly as-
sociated higher fasting plasma glucose levels (P = 0.0213)
and lower HOMA-B (P = 0.0027) (Supplementary Table 11).
Similar results were observed when the association anal-
yses were performed in normal fasting glucose individuals
only (Supplementary Table 11).

The cis-eQTL (cis-expression quantitative loci) analysis
using the Genevar eQTL database (19) (http://www.sanger.
ac.uk/resources/software/genevar/) showed suggestive ev-
idence of association between an intronic SNP (rs4752300,
r2 = 0.79 with rs10886471) in GRK5 and GRK5 mRNA
expression levels at P = 6 3 1024 (r = 0.361 between the
risk allele and GRK5 expression levels) in adipose tissue.
However, no evidence was found for associations between
SNPs at RASGRP1 and mRNA expression levels of their
nearby genes. To further confirm whether rs10886471
genotypes modify GRK5 mRNA expression, the GRK5 ex-
pression levels were estimated using quantitative real-time
RT-PCR in peripheral blood mRNA samples from 64 un-
related Chinese Hans, including 30 T2D case subjects and
34 nondiabetic control subjects. The T2D risk-increasing
C-allele of rs10886471 was significantly associated with
increased mRNA expression levels of GRK5 (P[dom] = 0.02)
with the same direction of effect in both T2D case subjects
and control subjects, consistent with the finding in the
Genevar eQTL database. Moreover, the GRK5 expression
levels in T2D case subjects increased by 40% compared
with their nondiabetic counterparts (P = 0.0048) (Figs. 3
and 4 and Supplementary Table 12). These results sug-
gested that rs10886471 risk C-allele might contribute to
T2D risk through increased GRK5 expression, but should
be interpreted cautiously because that blood is not a very
likely tissue to be involved in T2D.

We compared the LD structure of the two novel T2D loci
between Chinese Hans and Europeans and Japanese (Sup-
plementary Figs. 6 and 7A), respectively. Different pairwise
LD patterns were observed between Chinese Hans and
Europeans at both GRK5 (P = 0.0432) and RASGRP1 (P =
0.0043) loci, but not between Chinese Hans and Japanese
(P $ 0.101) (Supplementary Table 14). The risk allele
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frequencies of both GRK5-rs10886471 and RASGRP1-
rs7403531 in East Asians (0.79 and 0.33 in the HapMap
CHB population and 0.74 and 0.45 in the HapMap JPT
population for rs10886471 and rs7403531, respectively)
were also higher than those in Europeans (0.48 and 0.28
for rs10886471 and rs7403531 in HapMap CEU population,
respectively) (Supplementary Table 13).

DISCUSSION

In this study, we not only confirmed more than 20 pre-
viously reported loci, but also identified two novel T2D

loci: GRK5 (rs10886471) and RASGRP1 (rs7403531). The
SNP rs10886471 maps to an LD block within intron 3 of the
GRK5 gene, the only gene in this LD block (Supplementary
Fig. 6). Regional plots showed that rs10886471 represents
the strongest association signals at the GRK5 locus (Fig.
3A and Supplementary Fig. 5). GRK5 belongs to the GPCR
kinase family and plays a crucial role in phosphorylation of
multiple GPCRs and non-GPCR substrates, such as gluca-
gon receptor (31), b2-adrenergic receptor (32,33), Hsp70-
interacting protein (34), and nuclear factor-kB1/p105 (35),
which are either key regulators of glucose homeostasis
or inflammation. Disruption of GRK5 leads to decreased

FIG. 3. Regional plots of two novel T2D loci. A and B: Imputed SNPs were estimated by MACH software (http://www.sph.umich.edu/csg/abecasis/
MACH/) using LD information from 194 Asians (including 68 CHB, 25 CHS, 84 JPT, and 17 MXL) in 1000 Genome 2010$08 release as references.
P values were from pooled analysis, adjusting for age, sex, and the first two principle components in stage 1 samples. The regional plots for the 500-kb
region centered on index SNPs were generated by using LocusZoom (http://csg.sph.umich.edu/locuszoom/). The 2log10 P values of SNPs were plotted
against their genomic position (National Center for Biotechnology Information Build 37). The positions of genes were annotated from the University
of California Santa Cruz Genome Browser by using GRCh37 assembly. The index SNPs are in purple. Other SNPs are colored according to their LD
(r2) with the index SNP from 1000 Genome ASN. The recombination rate is shown as a light blue line to reflect the local LD structure.

FIG. 4. Expression analysis of GRK5. The relative expression levels of GRK5 were measured in blood samples from 30 T2D case subjects
(rs10886471 genotype: TT+TC/n = 11; CC/n = 19) and 34 nondiabetic control subjects (rs10886471 genotype: TT+TC/n = 13; CC/n = 20 [one missing
data]). Data are presented as mean and error bars (6 SEM). Values of the GRK5 relative expression levels were natural log transformed before
analysis.
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production of multiple inflammatory cytokines/chemokines
and decreased nuclear factor-kB activation both in vivo and
in vitro (36). The T2D risk-increasing allele of rs10886471
was also associated with higher GRK5 mRNA expression
levels, higher fasting insulin, but not with fasting glucose,
suggesting that it might impair insulin sensitivity by in-
creasing inflammatory response and consequently con-
tributes to T2D risk in Chinese Hans or East Asians.
Notably, GRK5 is a population-specific T2D locus and the
T2D association of GRK5-rs10886471 was not replicated in
populations of European origin. The risk allele frequency
of GRK5-rs10886471 in Chinese Hans was also much
higher than in Europeans (0.79 and 0.48 in HapMap CHB
and CEU populations, respectively), and the correspond-
ing population attributable risk in Chinese Hans was esti-
mated to be 8.66%. Moreover, there are significant different
LD structure for GRK5 (P = 0.0432) locus between Chinese
Hans and Europeans.

The second novel association signal (rs7403531) is lo-
cated at chr15q14 and in intron 2 of the RASGRP1 gene
(Supplementary Fig. 7A), which has also been replicated in
Europeans from the DIAGRAM Consortium (Supplemen-
tary Tables 8 and 13). Although no heterogeneity of effect
was observed between Chinese Hans and Europeans, the
risk allele frequency of rs7403531 in Chinese Hans was
moderately higher than in Europeans (0.33 and 0.28 in
HapMap CHB and CEU populations, respectively). Re-
gional plots showed that the strongest association signal at
this locus was observed with an imputed SNP rs12593201
(r2 = 0.81 with rs7403531) (Fig. 3B and Supplementary Fig.
5), which also showed a stronger T2D association in the
DIAGRAM plus GWAS meta-analysis (P = 2.4 3 1023)
(Supplementary Table 13). Conditional analysis in stage 1
samples suggested that neither of the SNPs were likely to
be the SNP driving the association (P $ 0.11). Notably,
rs7403531 was in modest LD (r2 = 0.46 in HapMap CEU
population) with a variant (rs7171171) previously shown
to be associated with type 1 diabetes (T1D) in populations
of European ancestry (37), but they are not in LD in Chi-
nese Hans (r2 = 0.03 in HapMap CHB population) (Sup-
plementary Fig. 7B), suggesting that the T2D association at
RASGRP1 is unlikely to be driven by the T1D-associated
SNP. RASGRP1 encodes the RAS guanyl releasing pro-
tein 1 (RasGRP1) that functions as a guanine nucleotide
exchange factor, which is required for the activation of
Ras/mitogen-activated protein kinase pathways (38) and
critically mediates the development and function of both T
and B lymphocytes (39–42). RasGRP1-deficient mice ex-
hibit defects in lymphocyte proliferation (40,43,44),
inflammatory cytokine production (43,45,46), and apopto-
sis (38). RASGRP1 is highly expressed in lymphocytes but
also in various other cells, including pancreatic b-cells
(47,48). Its dysfunction in b-cells may lead to islet in-
flammation and impaired b-cell function, which are con-
sidered as major factors involved in T2D pathogenesis
(49,50). In accordance with this, the T2D risk-increasing
allele of RASGRP1-rs7403531 was also associated higher
plasma glucose and lower HOMA-B, suggesting that the T2D
risk conferred by rs7403531 is likely mediated through an
impaired b-cell function. However, more functional studies
are required to draw a firm conclusion.

To test possible misclassification of T1D in our study, we
also examined associations of all known T1D-associated
variants with T2D in our stage 1 samples. In contrast to the
multiple replicated T2D loci, very few of the T1D-associated
variants showed a trend toward association with T2D

(P values: 0.01–0.05, P for binomial test = 0.24) (Supple-
mentary Table 15), suggesting a low misclassification rate in
our stage 1 sample. Moreover, we observed a similar OR
(combined P = 1 3 1023; OR = 1.09) when we performed
secondary association analyses for RASGRP1-rs7403531 in
5,678 T2D case and 8,438 control subjects from several
hospital-based case-control studies, in which all T2D case
subjects were negative for glutamic acid decarboxylase and
insulin autoantibody tests. All of these results, together
with the facts that all genotyped T2D case subjects in our
study were .30 years of age and had no prior history of
T1D, suggested that the observed T2D association signals
at RASGRP1 and GRK5 were unlikely to be driven by
T1D-associated variants or by case misclassification in
our study.

Taken together, this study is the largest GWAS of T2D
performed in Chinese Hans thus far. We have identified
two novel loci (GRK5 and RASGRP1) that are associated
with T2D at genome-wide significant levels. In particular,
the association signal at GRK5 seems to be specific to East
Asians, but this finding needs to be confirmed in further
studies. We have also confirmed the known T2D loci at
KCNQ1, CDKAL1, CDKN2B, CDC123, HNF1B, GLIS3,
and DUSP9 at genome-wide significant levels. Our findings
not only provide new insights into the pathophysiology of
T2D, but may also shed light on the ethnic differences in
T2D susceptibility.
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